IL-6 trans-signaling via STAT3 directs T cell infiltration in acute inflammation.
Journal: 2005/September - Proceedings of the National Academy of Sciences of the United States of America
ISSN: 0027-8424
Abstract:
Interleukin (IL)-6 signaling through its soluble receptor (IL-6 transsignaling) directs transition between innate and acquired immune responses by orchestrating the chemokine-directed attraction and apoptotic clearance of leukocytes. Through analysis of mononuclear cell infiltration in WT and IL-6-deficient mice during peritoneal inflammation, we now report that IL-6 selectively governs T cell infiltration by regulating chemokine secretion (CXCL10, CCL4, CCL5, CCL11, and CCL17) and chemokine receptor (CCR3, CCR4, CCR5, and CXCR3) expression on the CD3+ infiltrate. Although blockade of IL-6 trans-signaling prevented chemokine release, chemokine receptor expression remained unaltered suggesting that this response is regulated by IL-6 itself. To dissect the signaling events promoting T cell migration, inflammation was established in knock-in mice expressing mutated forms of the universal signal-transducing element for IL-6-related cytokines gp130. In mice (gp130Y757F/Y757F) deficient in SHP2 and SOCS3 binding, but presenting hyperactivation of STAT1/3, T cell recruitment and CCL5 expression was enhanced. Conversely, both of these parameters were suppressed in mice with ablated gp130-mediated STAT1/3 activation (gp130DeltaSTAT/DeltaSTAT). T cell migration was related to STAT3 activity, because monoallelic deletion of Stat3 in gp130(Y757F/Y757F) mice (gp130Y757F/Y757F:Stat3+/-) corrected the exaggerated responses observed in gp130Y757F/Y757F mice. Consequently, STAT3 plays a defining role in IL-6-mediated T cell migration.
Relations:
Content
Citations
(77)
References
(45)
Conditions
(1)
Chemicals
(7)
Genes
(3)
Organisms
(4)
Processes
(3)
Anatomy
(2)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Proc Natl Acad Sci U S A 102(27): 9589-9594

IL-6 trans-signaling via STAT3 directs T cell infiltration in acute inflammation

Departments of Medical Biochemistry and Immunology, Nephrology, and Rheumatology, School of Medicine, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom; and Ludwig Institute for Cancer Research, Colon Molecular and Cell Biology Laboratory, Parkville, Victoria 3050, Australia
To whom correspondence should be addressed. E-mail: ku.ca.fc@assenoj.
Edited by Philippa Marrack, National Jewish Medical and Research Center, Denver, CO
Edited by Philippa Marrack, National Jewish Medical and Research Center, Denver, CO
Received 2005 Mar 4; Accepted 2005 May 23.

Abstract

Interleukin (IL)-6 signaling through its soluble receptor (IL-6 transsignaling) directs transition between innate and acquired immune responses by orchestrating the chemokine-directed attraction and apoptotic clearance of leukocytes. Through analysis of mononuclear cell infiltration in WT and IL-6-deficient mice during peritoneal inflammation, we now report that IL-6 selectively governs T cell infiltration by regulating chemokine secretion (CXCL10, CCL4, CCL5, CCL11, and CCL17) and chemokine receptor (CCR3, CCR4, CCR5, and CXCR3) expression on the CD3 infiltrate. Although blockade of IL-6 trans-signaling prevented chemokine release, chemokine receptor expression remained unaltered suggesting that this response is regulated by IL-6 itself. To dissect the signaling events promoting T cell migration, inflammation was established in knock-in mice expressing mutated forms of the universal signal-transducing element for IL-6-related cytokines gp130. In mice (gp130) deficient in SHP2 and SOCS3 binding, but presenting hyperactivation of STAT1/3, T cell recruitment and CCL5 expression was enhanced. Conversely, both of these parameters were suppressed in mice with ablated gp130-mediated STAT1/3 activation (gp130). T cell migration was related to STAT3 activity, because monoallelic deletion of Stat3 in gp130 mice (gp130:Stat3) corrected the exaggerated responses observed in gp130 mice. Consequently, STAT3 plays a defining role in IL-6-mediated T cell migration.

Keywords: chemokines, cytokines, gp130
Abstract

Interleukin (IL)-6 is traditionally considered a regulator of acute-phase responses and a lymphocyte stimulatory factor (1). However recent advances have highlighted a pivotal role for this cytokine in directing leukocyte trafficking and facilitating transition between innate and acquired immune responses (2, 3). Identification of these IL-6 activities has largely been achieved through an increased understanding of the regulatory properties of its soluble receptor, whereas better appreciation of IL-6 signaling has led researchers to consider the interplay between IL-6 and other cytokines (47). These studies collectively underline a role for IL-6 in governing inflammation and have emphasized the therapeutic potential of targeting IL-6 as a strategy for the management of infectious and inflammatory diseases (8, 9).

IL-6 responses are transmitted through gp130, which serves as the universal signal-transducing receptor subunit for all IL-6-related cytokines (10, 11). Although this classically occurs through IL-6 binding to its membrane-bound receptor (IL-6R), it is clear that a soluble form of the cognate IL-6 receptor (sIL-6R) affords IL-6 with an alternative mechanism of gp130 activation. This additional mode of cell activation is termed IL-6 trans-signaling and results from formation of a sIL-6R/IL-6 complex, which can directly bind cellular gp130 (2). Because gp130 is ubiquitously expressed within tissue, trans-signaling provides IL-6 with the capacity to activate cells that would not intrinsically respond to IL-6 itself (2).

Studies have documented inherent roles for IL-6 trans-signaling in a number of biological processes, including its involvement in leukocyte trafficking and activation (2, 3). Although initial observations in IL-6-deficient (IL-6) mice noted that IL-6 suppressed neutrophil accumulation at sites of infection or inflammation (12, 13), it is evident that neutrophil clearance and their subsequent replacement by a more sustained population of mononuclear leukocytes is governed by the sIL-6R (5, 14). In particular, IL-6 trans-signaling defines the nature of the inflammatory infiltrate by controlling leukocyte apoptosis and the expression of inflammatory chemokines and adhesion molecules (5, 1318). This event is a critical step in the successful resolution of any inflammatory response and defines an immunological switch from innate to acquired immunity at sites of inflammation.

In terms of mononuclear leukocytes, IL-6-mediated signaling is associated with the activation of a number of cellular events important in host defense and chronic disease progression. With respect to monocytes/macrophages, IL-6 affects cellular differentiation (1921). However, the role of IL-6 in lymphocyte activation may have more profound consequences, where it controls T cell polarization (2224), IL-2-dependent cell proliferation (25, 26), L-selectin (CD62L) adhesion (18), B cell activation, and antibody production (25). Furthermore, the ability of IL-6 to rescue T cells from entering apoptosis (17, 2730) may have a considerable bearing in the progression of chronic inflammation. Indeed, sIL-6R-mediated trans-signaling promotes T cell expression of antiapoptotic regulators (17, 30), whereas blockade of sIL-6R signaling in experimental models suppresses the pathogenesis of Crohn's disease and rheumatoid arthritis (17, 31). Through in vivo analysis of experimental peritoneal inflammation, studies presented herein now show that IL-6 activation of STAT3 promotes T cell recruitment.

Click here to view.

Acknowledgments

This work was supported through The Wellcome Trust and Arthritis Research Campaign project grants.

Acknowledgments

Notes

Author contributions: R.M.M., B.J.J., N.T., and S.A.J. designed research; R.M.M., B.J.J., D.G., A.S.W., C.A.F., and C.R.P. performed research; B.J.J. and M.E. contributed new reagents/analytic tools; R.M.M., B.J.J., N.T., and S.J. analyzed data; and S.A.J. wrote the paper.

This paper was submitted directly (Track II) to the PNAS office.

Abbreviations: SES, Staphylococcus epidermidis; sIL-6R, soluble form of the cognate IL-6 receptor.

Notes
Author contributions: R.M.M., B.J.J., N.T., and S.A.J. designed research; R.M.M., B.J.J., D.G., A.S.W., C.A.F., and C.R.P. performed research; B.J.J. and M.E. contributed new reagents/analytic tools; R.M.M., B.J.J., N.T., and S.J. analyzed data; and S.A.J. wrote the paper.
This paper was submitted directly (Track II) to the PNAS office.
Abbreviations: SES, Staphylococcus epidermidis; sIL-6R, soluble form of the cognate IL-6 receptor.

References

  • 1. Kishimoto, T., Akira, S., Narazaki, M. & Taga, T. (1995) Blood86, 1243-1254. [[PubMed]
  • 2. Jones, S. A. & Rose-John, S. (2002) Biochim. Biophys. Acta1592, 251-263. [[PubMed]
  • 3. Kaplanski, G., Marin, V., Montero-Julian, F., Mantovani, A. & Farnier, C. (2003) Trends Immunol.24, 25-29. [[PubMed]
  • 4. Hong, F., Jaruga, B., Kim, W. H., Radaeva, S., El-Assal, O. N., Tian, Z., Nguyen, V.-A. & Gao, B. (2002) J. Clin. Invest.110, 1503-1513.
  • 5. McLoughlin, R. M., Witowski, J., Robson, R. L., Wilkinson, T. S., Hurst, S. M., Williams, A. S., Williams, J. D., Rose-John, S., Jones, S. A. & Topley, N. (2003) J. Clin. Invest.112, 598-607.
  • 6. Yasukawa, H., Ohishi, M., Mori, H., Murakami, M., Chinen, T., Aki, D., Hanada, T., Takeda, K., Akira, S., Hoshijima, M., et al. (2003) Nat. Immunol.4, 551-556. [[PubMed]
  • 7. Becker, C., Fantini, M. C., Schramm, C., Lehr, H. A., Wirtz, S., Nikolaev, A., Burg, J., Strand, S., Kiesslich, R., Huber, S., et al. (2004) Immunity21, 491-501. [[PubMed]
  • 8. Choy, E. H. S., Isenberg, D. A., Garrood, T., Farrow, S., Ioannou, Y., Bird, H., Cheung, N., Williams, B., Hazleman, B., Price, R., et al. (2002) Arthritis Rheum.41, 2117-2121. [PubMed]
  • 9. Ito, H., Takazoe, M., Fukuda, Y., Hibi, T., Kusugami, K., Andoh, A., Matsumoto, T., Yamamura, T., Azuma, J., Nishimoto, N., et al. (2004) Gastroenterology126, 989-996. [[PubMed]
  • 10. Heinrich, P. C., Behrmann, I., Haan, S., Hermanns, H. M., Müller-Newen, G. & Schaper, F. (2003) Biochem. J.374, 1-20.
  • 11. Ernst, M. & Jenkins. B. J. (2004) Trends Genet.20, 23-32. [[PubMed]
  • 12. Xing, Z., Gauldie, J., Cox, G., Baumann, H., Jordana, M., Lei, X.-F. & Achong, M. K. (1998) J. Clin. Invest.101, 311-320.
  • 13. Romano, M., Sironi, M., Toniati, C., Polentarutti, N., Fruscella, P., Ghezzi, P., Faggioni, R., Luini, W., van Hinsbergh, V., Sozzani, S., et al. (1997) Immunity6, 315-325. [[PubMed]
  • 14. Hurst, S. M., Wilkinson, T. S., McLoughlin, R. M., Jones, S., Horiuchi, S., Yamamoto, N., Rose-John, S., Fuller, G. M., Topley, N. & Jones, S. A. (2001) Immunity14, 705-715. [[PubMed]
  • 15. Modur, V., Li, Y., Zimmerman, G. A., Prescott, S. M. & McIntyre, T. M. (1997) J. Clin. Invest.100, 2752-2756.
  • 16. Marin, V., Montero-Julian, F. A., Gres, S., Boulay, V., Bongrand, P., Farnarier, C. & Kaplanski, G. (2001) J. Immunol.167, 3435-3444. [[PubMed]
  • 17. Atreya, R., Mudter, J., Finotto, S., Müllberg, J., Jostock, T., Wirtz, S., Schütz, M., Bartsch, B., Holtmann, M., Becker, C., et al. (2000) Nat. Med.6, 583-588. [[PubMed]
  • 18. Chen, Q., Wang, W.-C., Bruce, R., Li, H., Scleider, D. M., Mulbery, M. J., Bain, M. D., Wallace, P. K., Baumann, H. & Evans. S. S. (2004) Immunity20, 59-70. [[PubMed]
  • 19. Jenkins, B. J., Grail, D., Inglese, M., Quilici, C., Bozinovski, S., Wong, P. & Ernst, M. (2004) Mol. Cell. Biol.24, 1453-1463.
  • 20. Chomarat, P., Banchereau, J., Davoust, J. & Palucka, A. K. (2000) Nat. Immunol.1, 510-514. [[PubMed]
  • 21. Bleier, J. I., Pillarisetty, V. G., Shah, A. B. & DeMatteo, R. P. (2004) J. Immunol.172, 7408-7416. [[PubMed]
  • 22. Ohshima, S., Saeki, Y., Mima, T., Sasai, M., Nishioka, K., Nomura, S., Kopf, M., Katada, Y., Tanaka, T., Suemura, M. & Kishimoto, T. (1998) Proc. Natl. Acad. Sci. USA95, 8222-8226.
  • 23. Romani, L., Mencacci, A., Cenci, E., Spaccapelo, R., Toniatti, C., Puccetti, P., Bistoni, F. & Poli, V. (1996) J. Exp. Med.183, 1345-1355.
  • 24. Diehl, S., Anguita, J., Hoffmeyer, A., Zapton, T., Ihle, J. N., Fikrig, E. & Rincon, M. (2000) Immunity13, 805-815. [[PubMed]
  • 25. La Flamme, A. C. & Pearce, E. J. (1999) J. Immunol.162, 5829-5837. [[PubMed]
  • 26. Baroja, M. L., Ceuppens, J. L., van Damme, J. & Billiau, A. (1998) J. Immunol.141, 1502-1507. [[PubMed]
  • 27. Teague, T. K., Schaefer, B. C., Hildemen, D., Bender, J., Mitchell, T., Kappler, J. W. & Marrack, P. (2000) J. Exp. Med.191, 915-926.
  • 28. Narimatsu, M., Maeda, H., Itoh, S., Atsumi, T., Ohtani, T., Nishida, K., Itoh, M., Kamimura, D., Park, S.-J., Mizuno, K., et al. (2001) Mol. Cell. Biol.21, 6615-6625.
  • 29. Takeda, K., Kaisho, T., Yoshida, N., Takeda, J., Kishimoto, T. & Akira, S. (1998) J. Immunol.161, 4652-4660. [[PubMed]
  • 30. Curnow, S. J., Scheel-Toellner, D., Jenkinson, W., Raza, K., Durrani, O. M., Faint, J. M., Rauz, S., Wloka, K., Pilling, D., Rose-John, S., et al. (2004) J. Immunol.173, 5290-5297. [[PubMed]
  • 31. Nowell, M. A., Richards, R. J., Horiuchi, S., Yamamoto, N., Rose-John, S., Topley, N., Williams, A. S. & Jones, S. A. (2003) J. Immunol.171, 3202-3209. [[PubMed]
  • 32. Kopf, M., Baumann, H., Freer, G., Freudenberg, M., Lamers, M., Kishimoto, T., Zinkernagel, R., Bluethmann, H. & Kohler, G. (1994) Nature368, 339-341. [[PubMed]
  • 33. Tebbutt, N. C., Giraud, A. S., Inglese, M., Jenkins, B., Waring, P., Clay, F. J., Malki, S., Alderman, B. M., Grail, D., Hollande, F., et al. (2002) Nat. Med.8, 1089-1097. [[PubMed]
  • 34. Jenkins, B. J., Roberts, A. W., Najdovska, M., Grail, D. & Ernst, M. (2005) Blood105, 3512-3520. [[PubMed]
  • 35. McLoughlin, R. M., Hurst, S. M., Nowell, M. A., Harris, D. A., Horiuchi, S., Morgan, L. W., Wilkinson, T. S., Yamamoto, N., Topley, N. & Jones, S. A. (2004) J. Immunol.172, 5676-5683. [[PubMed]
  • 36. Atsumi, T., Ishihara, K., Kamimura, D., Ikushima, H., Ohtani, T., Hirota, S., Kobayashi, H., Park, S.-J., Saeki, Y., Kitamura, Y., et al. (2002) J. Exp. Med.196, 979-990.
  • 37. Tamm, I., Cardinale, I., Krueger, J., Murphy, J. S., May, L. T. & Sehgal, P. B. (1989) J. Exp. Med.170, 1649-1669.
  • 38. Kira, M., Sano, S., Takagi, S., Yoshikawa, K., Takeda, J. & Itami, S. (2002) J. Biol. Chem.277, 12931-12936. [[PubMed]
  • 39. Weissenbach, M., Clahsen, T., Weber, C., Spitzer, D., Wirth, D., Vestweber, D., Heinrich, P. C. & Schaper, F. (2004) Eur. J. Immunol.34, 2895-2906. [[PubMed]
  • 40. Sallusto, F., Mackay, C. R. & Lanzavecchia, A. (1997) Science277, 2005-2007. [[PubMed]
  • 41. Gerber, B. O., Zanni, M. P., Uguccioni, M., Loetscher, M., Mackay, C. R., Pichler, W. J., Yawalkar, N., Baggiolini, M. & Moser, B. (1997) Curr. Biol.7, 836-843. [[PubMed]
  • 42. Qin, S., Rottman, J. B., Myers, P., Weinblatt, M., Loetscher, M., Koch, A. E., Moser, B. & Mackay, C. R. (1998) J. Clin. Invest.101, 746-754.
  • 43. Sallusto, F., Lenig, D., Mackay, C. R. & Lanzavecchia, A. (1998) J. Exp. Med.187, 875-883.
  • 44. Loetscher, P., Seitz, M., Baggiolini, M. & Moser, B. (1996) J. Exp. Med.184, 569-577.
  • 45. Loetscher, M., Gerber, B., Loetscher, P., Jones, S. A., Piali, L., Clark-Lewis, I., Baggiolini, M. & Moser, B. (1996) J. Exp. Med.184, 963-969.
  • 46. Salmon, M., Scheel-Toellner, D., Huissoon, A. P., Pilling, D., Shamsaadeen, N., D'Angeac, A. D., Bacon, P. A., Emery, P. & Akbar, A. (1997) J. Clin. Invest.99, 439-446.
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.