Homologous Recombination and Human Health: The Roles of BRCA1, BRCA2, and Associated Proteins
Abstract
Homologous recombination (HR) is a major pathway for the repair of DNA double-strand breaks in mammalian cells, the defining step of which is homologous strand exchange directed by the RAD51 protein. The physiological importance of HR is underscored by the observation of genomic instability in HR-deficient cells and, importantly, the association of cancer predisposition and developmental defects with mutations in HR genes. The tumor suppressors BRCA1 and BRCA2, key players at different stages of HR, are frequently mutated in familial breast and ovarian cancers. Other HR proteins, including PALB2 and RAD51 paralogs, have also been identified as tumor suppressors. This review summarizes recent findings on BRCA1, BRCA2, and associated proteins involved in human disease with an emphasis on their molecular roles and interactions.
Soon after homologous recombination (HR) was discovered to be an important DNA repair mechanism in mammalian cells, an association between HR deficiency and human disease was uncovered when the hereditary breast cancer suppressors BRCA1 and BRCA2 were found to be required for HR (Moynahan and Jasin 2010; King 2014). Subsequently, germline mutations in a number of other HR genes have been linked to tumor predisposition. Congenital defects have also been associated with impaired HR. Tumorigenesis can result from ongoing genomic instability from diminished repair, whereas developmental defects can arise from cell death/senescence. That HR genes act as genomic caretakers has generated widespread interest in both the scientific and medical communities. Because HR defects confer sensitivity to certain DNA-damaging agents, they are being exploited in cancer therapies. Drugs that cause synthetic lethality in the context of HR defects also hold promise for treatment (Bryant et al. 2005; Farmer et al. 2005). This review provides a brief overview of HR in mammalian cells and summarizes the molecular roles of BRCA1, BRCA2, and associated HR proteins involved in human disease. Extensive discussion of HR pathways can be found in Mehta and Haber (2014).
ACKNOWLEDGMENTS
We thank previous members of the Jasin Laboratory whose work is referenced in this review. This work is supported by National Institutes of Health {"type":"entrez-nucleotide","attrs":{"text":"GM110978","term_id":"221993159","term_text":"GM110978"}}GM110978 (to R.P.) and {"type":"entrez-nucleotide","attrs":{"text":"CA185660","term_id":"35124656","term_text":"CA185660"}}CA185660 and {"type":"entrez-nucleotide","attrs":{"text":"GM054668","term_id":"218108106","term_text":"GM054668"}}GM054668 (to M.J.).
Footnotes
Editors: Stephen Kowalczykowski, Neil Hunter, and Wolf-Dietrich Heyer
Additional Perspectives on DNA Recombination available at www.cshperspectives.org
REFERENCES
References
- 1. [PubMed]
- 2. [PubMed]
- 3.
- 4.
- 5.
- 6.
- 7.
- 8. [PubMed]
- 9. [PubMed]
- 10.
- 11.
- 12. Bizard AH, Hickson ID 2014 The dissolution of double Holliday junctions. Cold Spring Harb Perspect Biol6: a016477. [Google Scholar]
- 13.
- 14. [PubMed]
- 15. [PubMed]
- 16.
- 17. [PubMed]
- 18. [PubMed]
- 19. [PubMed]
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27. [PubMed]
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34. [PubMed]
- 35.
- 36. [PubMed]
- 37.
- 38. [PubMed]
- 39. [PubMed]
- 40. [PubMed]
- 41. [PubMed]
- 42.
- 43.
- 44. [PubMed]
- 45.
- 46. [PubMed]
- 47. [PubMed]
- 48.
- 49. [PubMed]
- 50. [PubMed]
- 51. Daley JM, Gaines WA, Kwon YH, Sung P 2014 Regulation of DNA pairing in homologous recombination. Cold Spring Harb Perspect Biol6: a017954. [Google Scholar]
- 52.
- 53. [PubMed]
- 54. [PubMed]
- 55. [PubMed]
- 56.
- 57. [PubMed]
- 58.
- 59. [PubMed]
- 60. [PubMed]
- 61.
- 62. [PubMed]
- 63.
- 64.
- 65.
- 66. [PubMed]
- 67.
- 68. [PubMed]
- 69. [PubMed]
- 70. [PubMed]
- 71. [PubMed]
- 72. [PubMed]
- 73. [PubMed]
- 74. [PubMed]
- 75.
- 76. [PubMed]
- 77. [PubMed]
- 78. [PubMed]
- 79. [PubMed]
- 80. [PubMed]
- 81. [PubMed]
- 82. [PubMed]
- 83.
- 84. [PubMed]
- 85.
- 86.
- 87. [PubMed]
- 88.
- 89. [PubMed]
- 90. [PubMed]
- 91. [PubMed]
- 92.
- 93.
- 94.
- 95.
- 96.
- 97. [PubMed]
- 98.
- 99.
- 100.
- 101. [PubMed]
- 102. [PubMed]
- 103.
- 104.
- 105. [PubMed]
- 106.
- 107.
- 108.
- 109. [PubMed]
- 110. [PubMed]
- 111. [PubMed]
- 112. [PubMed]
- 113. [PubMed]
- 114.
- 115.
- 116. [PubMed]
- 117. [PubMed]
- 118.
- 119. [PubMed]
- 120.
- 121.
- 122.
- 123.
- 124. Lam I, Keeney S 2015 Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb Perspect Biol7: a016634. [Google Scholar]
- 125. [PubMed]
- 126. [PubMed]
- 127.
- 128. [PubMed]
- 129. [PubMed]
- 130.
- 131. [PubMed]
- 132.
- 133.
- 134. [PubMed]
- 135. [PubMed]
- 136. [PubMed]
- 137.
- 138. [PubMed]
- 139.
- 140.
- 141.
- 142.
- 143.
- 144. [PubMed]
- 145. [PubMed]
- 146.
- 147.
- 148.
- 149. [PubMed]
- 150.
- 151. Mehta A, Haber JE 2014 Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol6: a016428. [Google Scholar]
- 152. [PubMed]
- 153. [PubMed]
- 154. [PubMed]
- 155. [PubMed]
- 156.
- 157.
- 158. [PubMed]
- 159.
- 160.
- 161. Morrical SW 2015 DNA pairing and annealing processes in homologous recombination and homology-directed repair. Cold Spring Harb Perspect Biol7: a016444. [Google Scholar]
- 162. [PubMed]
- 163. [PubMed]
- 164.
- 165. [PubMed]
- 166. [PubMed]
- 167. [PubMed]
- 168.
- 169.
- 170. [PubMed]
- 171. [PubMed]
- 172.
- 173. [PubMed]
- 174.
- 175. [PubMed]
- 176.
- 177. [PubMed]
- 178.
- 179.
- 180.
- 181. [PubMed]
- 182. [PubMed]
- 183.
- 184. [PubMed]
- 185.
- 186. [PubMed]
- 187. Reams AB, Roth JR 2015 Mechanisms of gene duplication and amplification. Cold Spring Harb Perspect Biol7: a016592. [Google Scholar]
- 188.
- 189. [PubMed]
- 190.
- 191.
- 192.
- 193. [PubMed]
- 194.
- 195.
- 196.
- 197. [PubMed]
- 198.
- 199.
- 200.
- 201. [PubMed]
- 202.
- 203.
- 204. [PubMed]
- 205. [PubMed]
- 206. [PubMed]
- 207.
- 208.
- 209. [PubMed]
- 210. [PubMed]
- 211. [PubMed]
- 212.
- 213.
- 214.
- 215.
- 216. [PubMed]
- 217. [PubMed]
- 218. [PubMed]
- 219.
- 220.
- 221. [PubMed]
- 222.
- 223. [PubMed]
- 224.
- 225. Syeda AH, Hawkins M, McGlynn P 2014 Recombination and replication. Cold Spring Harb Perspect Biol6: a016550. [Google Scholar]
- 226. Symington LS 2014 End resection at DNA double-strand breaks: Mechanism and regulation. Cold Spring Harb Perspect Biol6: a016436. [Google Scholar]
- 227.
- 228.
- 229. [PubMed]
- 230. [PubMed]
- 231.
- 232.
- 233.
- 234.
- 235.
- 236.
- 237.
- 238. [PubMed]
- 239.
- 240. [PubMed]
- 241.
- 242. [PubMed]
- 243. [PubMed]
- 244. [PubMed]
- 245.
- 246.
- 247.
- 248.
- 249.
- 250.
- 251. [PubMed]
- 252. [PubMed]
- 253. [PubMed]
- 254. [PubMed]
- 255. [PubMed]
- 256. [PubMed]
- 257.
- 258. [PubMed]
- 259. Wyatt HDM, West SC 2014 Holliday junction resolvases. Cold Spring Harb Perspect Biol6: a023192. [Google Scholar]
- 260.
- 261. [PubMed]
- 262. [PubMed]
- 263. [PubMed]
- 264. [PubMed]
- 265. [PubMed]
- 266. [PubMed]
- 267.
- 268.
- 269.
- 270.
- 271. [PubMed]
- 272. [PubMed]
- 273. [PubMed]
- 274.
- 275.
- 276. Zelensky A, Kanaar R, Wyman C 2014 Mediators of homologous DNA pairing. Cold Spring Harb Perspect Biol6: a016451. [Google Scholar]
- 277.
- 278.
- 279. [PubMed]
- 280. [PubMed]
- 281.
- 282.
- 283.