Genome-Wide CRISPR-Cas9 Screening Identifies NF-κB/E2F6 Responsible for EGFRvIII-Associated Temozolomide Resistance in Glioblastoma.
Journal: 2019/September - Advanced Science
ISSN: 2198-3844
Abstract:
Amplification of epidermal growth factor receptor (EGFR) and active mutant EGFRvIII occurs frequently in glioblastoma (GBM) and contributes to chemo/radio-resistance in various cancers, especially in GBM. Elucidating the underlying molecular mechanism of temozolomide (TMZ) resistance in GBM could benefit cancer patients. A genome-wide screening under a clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 library is conducted to identify the genes that confer resistance to TMZ in EGFRvIII-expressing GBM cells. Deep sgRNA sequencing reveals 191 candidate genes that are responsible for TMZ resistance in EGFRvIII-expressing GBM cells. Notably, E2F6 is proven to drive a TMZ resistance, and E2F6 expression is controlled by the EGFRvIII/AKT/NF-κB pathway. Furthermore, E2F6 is shown as a promising therapeutic target for TMZ resistance in orthotopic GBM cell line xenografts and GBM patient-derived xenografts models. After integrating clinical data with paired primary-recurrent RNA sequencing data from 134 GBM patients who received TMZ treatment after surgery, it has been revealed that the E2F6 expression level is a predictive marker for TMZ response. Therefore, the inhibition of E2F6 is a promising strategy to conquer TMZ resistance in GBM.
Relations:
Content
Citations
(6)
References
(29)
Diseases
(1)
Drugs
(2)
Chemicals
(2)
Genes
(3)
Processes
(2)
Anatomy
(2)
Similar articles
Articles by the same authors
Discussion board
Adv Sci (Weinh) 6(17): 1900782

Genome‐Wide CRISPR‐Cas9 Screening Identifies NF‐κB/E2F6 Responsible for EGFRvIII‐Associated Temozolomide Resistance in Glioblastoma

+6 authors

Supporting information

Supplementary

Supplementary

Supplementary

Supplementary

Supplementary

Supplementary

Supplementary

Supplementary

Supplementary

Tianjin Neurological Institute, Key Laboratory of Post‐Neurotrauma Neuro‐Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China,
Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China,
Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China,
Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China,
Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, 071000, China,
Department of Pathology, Affiliated Hospital of Hebei University, Baoding, 071000, China,
Xudong Wu, Email: nc.ude.umt@gnoduxuw.
Contributor Information.
Corresponding author.
E‐mail: nc.ude.umcc@oatgnaij, nc.ude.umt@16079gnak, nc.ude.umt@gnoduxuw
Received 2019 Apr 5; Revised 2019 Jun 10
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Abstract

Amplification of epidermal growth factor receptor (EGFR) and active mutant EGFRvIII occurs frequently in glioblastoma (GBM) and contributes to chemo/radio‐resistance in various cancers, especially in GBM. Elucidating the underlying molecular mechanism of temozolomide (TMZ) resistance in GBM could benefit cancer patients. A genome‐wide screening under a clustered regularly interspaced short palindromic repeats (CRISPR)‐Cas9 library is conducted to identify the genes that confer resistance to TMZ in EGFRvIII‐expressing GBM cells. Deep sgRNA sequencing reveals 191 candidate genes that are responsible for TMZ resistance in EGFRvIII‐expressing GBM cells. Notably, E2F6 is proven to drive a TMZ resistance, and E2F6 expression is controlled by the EGFRvIII/AKT/NF‐κB pathway. Furthermore, E2F6 is shown as a promising therapeutic target for TMZ resistance in orthotopic GBM cell line xenografts and GBM patient‐derived xenografts models. After integrating clinical data with paired primary–recurrent RNA sequencing data from 134 GBM patients who received TMZ treatment after surgery, it has been revealed that the E2F6 expression level is a predictive marker for TMZ response. Therefore, the inhibition of E2F6 is a promising strategy to conquer TMZ resistance in GBM.

Keywords: CRISPR‐Cas9 libraries, E2F6, glioblastoma (GBM), temozolomide (TMZ) resistance
Abstract

Supplementary

Click here for additional data file.(1.3M, pdf)
Click here for additional data file.(1.3M, pdf)

Supplementary

Click here for additional data file.(53K, xlsx)
Click here for additional data file.(53K, xlsx)

Supplementary

Click here for additional data file.(15K, xlsx)
Click here for additional data file.(15K, xlsx)

Supplementary

Click here for additional data file.(69K, xlsx)
Click here for additional data file.(69K, xlsx)

Supplementary

Click here for additional data file.(247K, xlsx)
Click here for additional data file.(247K, xlsx)

Supplementary

Click here for additional data file.(157K, xlsx)
Click here for additional data file.(157K, xlsx)

Supplementary

Click here for additional data file.(57K, xlsx)
Click here for additional data file.(57K, xlsx)

Supplementary

Click here for additional data file.(224K, xlsx)
Click here for additional data file.(224K, xlsx)

Supplementary

Click here for additional data file.(41K, xlsx)
Click here for additional data file.(41K, xlsx)

Notes

Huang K., Liu X., Li Y., Wang Q., Zhou J., Wang Y., Dong F., Yang C., Sun Z., Fang C., Liu C., Tan Y., Wu X., Jiang T., Kang C., Genome‐Wide CRISPR‐Cas9 Screening Identifies NF‐κB/E2F6 Responsible for EGFRvIII‐Associated Temozolomide Resistance in Glioblastoma. Adv. Sci. 2019, 6, 1900782 10.1002/advs.201900782 [CrossRef] [Google Scholar]

Notes

Contributor Information

Xudong Wu, Email: nc.ude.umt@gnoduxuw.

Tao Jiang, Email: nc.ude.umcc@oatgnaij.

Chunsheng Kang, Email: nc.ude.umt@16079gnak.

Contributor Information

References

  • 1. Furnari F. B., Fenton T., Bachoo R. M., Mukasa A., Stommel J. M., Stegh A., Hahn W. C., Ligon K. L., Louis D. N., Brennan C., Chin L., DePinho R. A., Cavenee W. K., Genes Dev. 2007, 21, 2683. [[PubMed]
  • 2. Stupp R., Hegi M. E., Mason W. P., van den Bent M. J., Taphoorn M. J., Janzer R. C., Ludwin S. K., Allgeier A., Fisher B., Belanger K., Hau P., Brandes A. A., Gijtenbeek J., Marosi C., Vecht C. J., Mokhtari K., Wesseling P., Villa S., Eisenhauer E., Gorlia T., Weller M., Lacombe D., Cairncross J. G., Mirimanoff R. O., Lancet Oncol. 2009, 10, 459. [[PubMed]
  • 3. Brennan C. W., Verhaak R. G., McKenna A., Campos B., Noushmehr H., Salama S. R., Zheng S., Chakravarty D., Sanborn J. Z., Berman S. H., Beroukhim R., Bernard B., Wu C. J., Genovese G., Shmulevich I., Barnholtz‐Sloan J., Zou L., Vegesna R., Shukla S. A., Ciriello G., Yung W. K., Zhang W., Sougnez C., Mikkelsen T., Aldape K., Bigner D. D., Van Meir E. G., Prados M., Sloan A., Black K. L., Eschbacher J., Finocchiaro G., Friedman W., Andrews D. W., Guha A., Iacocca M., O'Neill B. P., Foltz G., Myers J., Weisenberger D. J., Penny R., Kucherlapati R., Perou C. M., Hayes D. N., Gibbs R., Marra M., Mills G. B., Lander E., Spellman P., Wilson R., Sander C., Weinstein J., Meyerson M., Gabriel S., Laird P. W., Haussler D., Getz G., Chin L., Network T. R., Cell 2013, 155, 462.
  • 4. Han L., Liu C., Qi H., Zhou J., Wen J., Wu D., Xu D., Qin M., Ren J., Wang Q., Long L., Liu Y., Chen I., Yuan X., Lu Y., Kang C., Adv. Mater. 2019, 31, 1805697. [[PubMed]
  • 5. Hirose Y., Berger M. S., Pieper R. O., Cancer Res. 2001, 61, 1957. [[PubMed]
  • 6. a) Weller M., Kaulich K., Hentschel B., Felsberg J., Gramatzki D., Pietsch T., Simon M., Westphal M., Schackert G., Tonn J. C., von Deimling A., Davis T., Weiss W. A., Loeffler M., Reifenberger G., German Glioma N., Int. J. Cancer 2014, 134, 2437; [b) Weller M., Cloughesy T., Perry J. R., Wick W., Neuro‐Oncology 2013, 15, 4. [PubMed]
  • 7. Shalem O., Sanjana N. E., Hartenian E., Shi X., Scott D. A., Mikkelsen T. S., Heckl D., Ebert B. L., Root D. E., Doench J. G., Zhang F., Science 2014, 343, 84.
  • 8. Mukherjee B., McEllin B., Camacho C. V., Tomimatsu N., Sirasanagandala S., Nannepaga S., Hatanpaa K. J., Mickey B., Madden C., Maher E., Boothman D. A., Furnari F., Cavenee W. K., Bachoo R. M., Burma S., Cancer Res. 2009, 69, 4252.
  • 9. Huang P. H., Xu A. M., White F. M., Sci. Signaling 2009, 2, re6. [[PubMed]
  • 10. Cahill K. E., Morshed R. A., Yamini B., Neuro‐Oncology 2016, 18, 329.
  • 11. Back M. F., Ang E. L., Ng W. H., See S. J., Lim C. C., Chan S. P., Yeo T. T., Ann. Acad. Med. Singapore 2007, 36, 338. [[PubMed]
  • 12. Sarkaria J. N., Kitange G. J., James C. D., Plummer R., Calvert H., Weller M., Wick W., Clin. Cancer Res. 2008, 14, 2900.
  • 13. a) Christmann M., Verbeek B., Roos WP., Kaina B., Bioch. Biophys. Acta 2011, 1816, 179; [b) Gerson S. L., Nat. Rev. Cancer 2004, 4, 296. [[PubMed][Google Scholar]
  • 14. a) Huang B. S., Luo Q. Z., Han Y., Huang D., Tang Q. P., Wu L. X., J. Cell. Biochem. 2017, 118, 3452; [b) Wu Y., Dong L., Bao S., Wang M., Yun Y., Zhu R., Biomed. Pharmacother. 2016, 84, 462; [c) Paul‐Samojedny M., Pudelko A., Kowalczyk M., Fila‐Danilow A., Suchanek‐Raif R., Borkowska P., Kowalski J., BioDrugs 2016, 30, 129. [[PubMed]
  • 15. Caporali S., Levati L., Graziani G., Muzi A., Atzori M. G., Bonmassar E., Palmieri G., Ascierto P. A., D'Atri S., J. Transl. Med. 2012, 10, 252.
  • 16. Chuang S. E., Yeh P. Y., Lu Y. S., Lai G. M., Liao C. M., Gao M., Cheng A. L., Biochem. Pharmacol. 2002, 63, 1709. [[PubMed]
  • 17. Amiri K. I., Horton L. W., LaFleur B. J., Sosman J. A., Richmond A., Cancer Res. 2004, 64, 4912. [[PubMed]
  • 18. Wu Z. H., Shi Y., Tibbetts R. S., Miyamoto S., Science 2006, 311, 1141. [[PubMed]
  • 19. Miyamoto S., Cell Res. 2011, 21, 116.
  • 20. Giangrande P. H., Zhu W., Schlisio S., Sun X., Mori S., Gaubatz S., Nevins J. R., Genes Dev. 2004, 18, 2941.
  • 21. Bertoli C., Klier S., McGowan C., Wittenberg C., de Bruin RA., Curr. Biol. 2013, 23, 1629. [Google Scholar]
  • 22. a) Carvajal L. A., Hamard P. J., Tonnessen C., Manfredi J. J., Genes Dev. 2012, 26, 1533; b) Zalmas L. P., Zhao X., Graham A. L., Fisher R., Reilly C., Coutts A. S., La Thangue N. B., EMBO Rep. 2008, 9, 252.
  • 23. a) Zhang Q., Sun M., Zhou S., Guo B., Cell Death Discovery 2016, 2, 16036; b) Cheng F. H. C., Lin H. Y., Hwang T. W., Chen Y. C., Huang R. L., Chang C. B., Yang W., Lin R. I., Lin C. W., Chen G. C. W., Mai S. Y., Lin J. M. J., Chuang Y. M., Chou J. L., Kuo L. W., Li C., Cheng A. S. L., Lai H. C., Wu S. F., Tsai J. C., Chan M. W. Y., Cancer Sci. 2019, 110, 1085.
  • 24. Dong F., Eibach M., Bartsch J. W., Dolga A. M., Schlomann U., Conrad C., Schieber S., Schilling O., Biniossek M. L., Culmsee C., Strik H., Koller G., Carl B., Nimsky C., Neuro‐Oncology 2015, 17, 1474.
  • 25. Huang K., Fang C., Yi K., Liu X., Qi H., Tan Y., Zhou J., Li Y., Liu M., Zhang Y., Yang J., Zhang J., Li M., Kang C., Theranostics 2018, 8, 1540.
  • 26. Ceccarelli M., Barthel F. P., Malta T. M., Sabedot T. S., Salama S. R., Murray B. A., Morozova O., Newton Y., Radenbaugh A., Pagnotta S. M., Anjum S., Wang J., Manyam G., Zoppoli P., Ling S., Rao A. A., Grifford M., Cherniack A. D., Zhang H., Poisson L., Carlotti C. G. Jr., Tirapelli D. P., Rao A., Mikkelsen T., Lau C. C., Yung W. K., Rabadan R., Huse J., Brat D. J., Lehman N. L., Barnholtz‐Sloan J. S., Zheng S., Hess K., Rao G., Meyerson M., Beroukhim R., Cooper L., Akbani R., Wrensch M., Haussler D., Aldape K. D., Laird P. W., Gutmann D. H., Network T. R., Noushmehr H., Iavarone A., Verhaak R. G., Cell 2016, 164, 550.
  • 27. Gusev Y., Bhuvaneshwar K., Song L., Zenklusen JC., Fine H., Madhavan S., Sci. Data 2018, 5, 180158. [Google Scholar]
  • 28. Bao Z. S., Chen H. M., Yang M. Y., Zhang C. B., Yu K., Ye W. L., Hu B. Q., Yan W., Zhang W., Akers J., Ramakrishnan V., Li J., Carter B., Liu Y. W., Hu H. M., Wang Z., Li M. Y., Yao K., Qiu X. G., Kang C. S., You Y. P., Fan X. L., Song W. S., Li R. Q., Su X. D., Chen C. C., Jiang T., Genome Res. 2014, 24, 1765.
  • 29. Huang K., Yang C., Wang Q. X., Li Y. S., Fang C., Tan Y. L., Wei J. W., Wang Y. F., Li X., Zhou J. H., Zhou B. C., Yi K. K., Zhang K. L., Li J., Kang C. S., Cancer Lett. 2017, 388, 269. [[PubMed]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.