Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer.
Journal: 2010/November - Thyroid
ISSN: 1557-9077
Abstract:
BACKGROUND
Aberrant activation of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway plays a fundamental role in thyroid tumorigenesis, particularly in follicular thyroid cancer (FTC) and aggressive thyroid cancer, such as anaplastic thyroid cancer (ATC). As the drivers of this process, many genetic alterations activating the PI3K/Akt pathway have been identified in thyroid cancer in recent years.
CONCLUSIONS
This review summarizes the current knowledge on major genetic alterations in the PI3K/Akt pathway. These include PIK3CA mutations and genomic amplification/copy gain, Ras mutations, PTEN mutations, RET/PTC and PPARgamma/Pax8 rearrangements, as well as amplification/copy gain of PIK3CB, PDK1, Akt, and various receptor tyrosine kinase genes. Most of these genetic alterations are particularly common in FTC and many of them are even more common in ATC; they are generally less common in papillary thyroid cancer (PTC), in which the MAP kinase (MAPK) pathway activated by the BRAF mutation instead plays a major role. Methylation and, thus, epigenetic silencing of PTEN, a major negative regulator of the PI3K/Akt pathway, occurs in close association with activating genetic alterations of the PI3K/Akt pathway, constituting a unique self-enhancement mechanism for this pathway. Many of these genetic alterations are mutually exclusive in differentiated thyroid tumors, but with increasing concurrence from benign tumors to FTC to ATC. RET/PTC, Ras, and receptor tyrosine kinase could dually activate the PI3K/Akt and MAPK pathways. Most cases of ATC harbor genetic alterations in these genes or other genetic combinations that can activate both pathways. It is proposed that genetic alterations in the PI3K/Akt pathway promote thyroid cell transformation to FTC and that genetic alterations in the MAPK pathway promote cell transformation to PTC; accumulation of multiple genetic alterations that can activate both pathways promotes thyroid cancer aggressiveness and progression to ATC.
CONCLUSIONS
Genetic alterations are common in the PI3K/Akt pathway in thyroid cancer and play a fundamental role in the tumorigenesis and progression of this cancer. This provides a strong basis for the emerging development of novel genetic-based diagnostic, prognostic, and therapeutic strategies for thyroid cancer.
Relations:
Content
Citations
(96)
References
(93)
Diseases
(2)
Drugs
(1)
Chemicals
(2)
Organisms
(2)
Processes
(5)
Affiliates
(2)
Similar articles
Articles by the same authors
Discussion board
Thyroid 20(7): 697-706

Genetic Alterations in the Phosphatidylinositol-3 Kinase/Akt Pathway in Thyroid Cancer

Background

Aberrant activation of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway plays a fundamental role in thyroid tumorigenesis, particularly in follicular thyroid cancer (FTC) and aggressive thyroid cancer, such as anaplastic thyroid cancer (ATC). As the drivers of this process, many genetic alterations activating the PI3K/Akt pathway have been identified in thyroid cancer in recent years.

Summary

This review summarizes the current knowledge on major genetic alterations in the PI3K/Akt pathway. These include PIK3CA mutations and genomic amplification/copy gain, Ras mutations, PTEN mutations, RET/PTC and PPARγ/Pax8 rearrangements, as well as amplification/copy gain of PIK3CB, PDK1, Akt, and various receptor tyrosine kinase genes. Most of these genetic alterations are particularly common in FTC and many of them are even more common in ATC; they are generally less common in papillary thyroid cancer (PTC), in which the MAP kinase (MAPK) pathway activated by the BRAF mutation instead plays a major role. Methylation and, thus, epigenetic silencing of PTEN, a major negative regulator of the PI3K/Akt pathway, occurs in close association with activating genetic alterations of the PI3K/Akt pathway, constituting a unique self-enhancement mechanism for this pathway. Many of these genetic alterations are mutually exclusive in differentiated thyroid tumors, but with increasing concurrence from benign tumors to FTC to ATC. RET/PTC, Ras, and receptor tyrosine kinase could dually activate the PI3K/Akt and MAPK pathways. Most cases of ATC harbor genetic alterations in these genes or other genetic combinations that can activate both pathways. It is proposed that genetic alterations in the PI3K/Akt pathway promote thyroid cell transformation to FTC and that genetic alterations in the MAPK pathway promote cell transformation to PTC; accumulation of multiple genetic alterations that can activate both pathways promotes thyroid cancer aggressiveness and progression to ATC.

Conclusions

Genetic alterations are common in the PI3K/Akt pathway in thyroid cancer and play a fundamental role in the tumorigenesis and progression of this cancer. This provides a strong basis for the emerging development of novel genetic-based diagnostic, prognostic, and therapeutic strategies for thyroid cancer.

Laboratory for Cellular and Molecular Thyroid Research, Division of Endocrinology and Metabolism, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
Corresponding author.
Address correspondence to: Mingzhao Xing, M.D., Ph.D., Laboratory for Cellular and Molecular Thyroid Research, Division of Endocrinology and Metabolism, Johns Hopkins University School of Medicine, 1830 East Monument St., Suite 333, Baltimore, MD 21287. E-mail:ude.imhj@1gnixm
Address correspondence to: Mingzhao Xing, M.D., Ph.D., Laboratory for Cellular and Molecular Thyroid Research, Division of Endocrinology and Metabolism, Johns Hopkins University School of Medicine, 1830 East Monument St., Suite 333, Baltimore, MD 21287. E-mail:ude.imhj@1gnixm

Abstract

Background

Aberrant activation of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway plays a fundamental role in thyroid tumorigenesis, particularly in follicular thyroid cancer (FTC) and aggressive thyroid cancer, such as anaplastic thyroid cancer (ATC). As the drivers of this process, many genetic alterations activating the PI3K/Akt pathway have been identified in thyroid cancer in recent years.

Summary

This review summarizes the current knowledge on major genetic alterations in the PI3K/Akt pathway. These include PIK3CA mutations and genomic amplification/copy gain, Ras mutations, PTEN mutations, RET/PTC and PPARγ/Pax8 rearrangements, as well as amplification/copy gain of PIK3CB, PDK1, Akt, and various receptor tyrosine kinase genes. Most of these genetic alterations are particularly common in FTC and many of them are even more common in ATC; they are generally less common in papillary thyroid cancer (PTC), in which the MAP kinase (MAPK) pathway activated by the BRAF mutation instead plays a major role. Methylation and, thus, epigenetic silencing of PTEN, a major negative regulator of the PI3K/Akt pathway, occurs in close association with activating genetic alterations of the PI3K/Akt pathway, constituting a unique self-enhancement mechanism for this pathway. Many of these genetic alterations are mutually exclusive in differentiated thyroid tumors, but with increasing concurrence from benign tumors to FTC to ATC. RET/PTC, Ras, and receptor tyrosine kinase could dually activate the PI3K/Akt and MAPK pathways. Most cases of ATC harbor genetic alterations in these genes or other genetic combinations that can activate both pathways. It is proposed that genetic alterations in the PI3K/Akt pathway promote thyroid cell transformation to FTC and that genetic alterations in the MAPK pathway promote cell transformation to PTC; accumulation of multiple genetic alterations that can activate both pathways promotes thyroid cancer aggressiveness and progression to ATC.

Conclusions

Genetic alterations are common in the PI3K/Akt pathway in thyroid cancer and play a fundamental role in the tumorigenesis and progression of this cancer. This provides a strong basis for the emerging development of novel genetic-based diagnostic, prognostic, and therapeutic strategies for thyroid cancer.

Abstract

Footnotes

Portions of this review were presented at the Spring 2010 Meeting of the American Thyroid Association, “Thyroid Disorders in the Era of Personalized Medicine,” Minneapolis, MN, May 13–16, 2010.

Footnotes

References

  • 1. Xing MBRAF mutation in thyroid cancer. Endocr Relat Cancer. 2005;12:245–262.[PubMed][Google Scholar]
  • 2. Xing MBRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007;28:742–762.[PubMed][Google Scholar]
  • 3. Ciampi R. Nikiforov YE. RET/PTC rearrangements and BRAF mutations in thyroid tumorigenesis. Endocrinology. 2007;148:936–941.[PubMed]
  • 4. Riesco-Eizaguirre G. Santisteban P. Molecular biology of thyroid cancer initiation. Clin Transl Oncol. 2007;9:686–693.[PubMed]
  • 5. Xing MRecent advances in molecular biology of thyroid cancer and their clinical implications. Otolaryngol Clin North Am. 2008;41:1135–1146.[Google Scholar]
  • 6. Sobrinho-Simões M. Máximo V. Rocha AS. Trovisco V. Castro P. Preto A. Lima J. Soares P. Intragenic mutations in thyroid cancer. Endocrinol Metab Clin North Am. 2008;37:333–362.[PubMed]
  • 7. Saji M. Ringel MD. The PI3K-Akt-mTOR pathway in initiation and progression of thyroid tumors. Mol Cell Endocrinol. 2010;321:20–28.
  • 8. Vivanco I. Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489–501.[PubMed]
  • 9. Fresno Vara JA. Casado E. de Castro J. Cejas P. Belda-Iniesta C. González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30:193–204.[PubMed]
  • 10. Liu P. Cheng H. Roberts TM. Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8:627–644.
  • 11. Courtney KD. Corcoran RB. Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol. 2010;28:1075–1083.
  • 12. Dummler B. Hemmings BA. Physiological roles of PKB/Akt isoforms in development and disease. Biochem Soc Trans. 2007;35:231–235.[PubMed]
  • 13. Meric-Bernstam F. Gonzalez-Angulo AM. Targeting the mTOR signaling network for cancer therapy. J Clin Oncol. 2009;27:2278–2287.
  • 14. Cantley LC. Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA. 1999;96:4240–4245.
  • 15. Sansal I. Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol. 2004;22:2954–2963.[PubMed]
  • 16. Samuels Y. Wang Z. Bardelli A. Silliman N. Ptak J. Szabo S. Yan H. Gazdar A. Powell SM. Riggins GJ. Willson JK. Markowitz S. Kinzler KW. Vogelstein B. Velculescu VE. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304:554.[PubMed]
  • 17. Wu G. Mambo E. Guo Z. Hu S. Huang X. Gollin SM. Trink B. Ladenson PW. Sidransky D. Xing M. Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumors. J Clin Endocrinol Metab. 2005;90:4688–4693.[PubMed]
  • 18. García-Rostán G. Costa AM. Pereira-Castro I. Salvatore G. Hernandez R. Hermsem MJ. Herrero A. Fusco A. Cameselle-Teijeiro J. Santoro M. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 2005;65:10199–10207.[PubMed]
  • 19. Hou P. Liu D. Shan Y. Hu S. Studeman K. Condouris S. Wang Y. Trink A. El-Naggar AK. Tallini G. Vasko V. Xing M. Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res. 2007;13:1161–1170.[PubMed]
  • 20. Abubaker J. Jehan Z. Bavi P. Sultana M. Al-Harbi S. Ibrahim M. Al-Nuaim A. Ahmed M. Amin T. Al-Fehaily M. Al-Sanea O. Al-Dayel F. Uddin S. Al-Kuraya KS. Clinicopathological analysis of papillary thyroid cancer with PIK3CA alterations in a Middle Eastern population. J Clin Endocrinol Metab. 2008;93:611–618.[PubMed]
  • 21. Santarpia L. El-Naggar AK. Cote GJ. Myers JN. Sherman SI. Phosphatidylinositol 3-kinase/Akt and ras/raf-mitogen-activated protein kinase pathway mutations in anaplastic thyroid cancer. J Clin Endocrinol Metab. 2008;93:278–284.[PubMed]
  • 22. Liu Z. Hou P. Ji M. Guan H. Studeman K. Jensen K. Vasko V. El-Naggar AK. Xing M. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J Clin Endocrinol Metab. 2008;93:3106–3116.[PubMed]
  • 23. Ricarte-Filho JC. Ryder M. Chitale DA. Rivera M. Heguy A. Ladanyi M. Janakiraman M. Solit D. Knauf JA. Tuttle RM. Ghossein RA. Fagin JA. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 2009;69:4885–4893.
  • 24. Vasko V. Hu S. Wu G. Xing JC. Larin A. Savchenko V. Trink B. Xing M. High prevalence and possible de novo formation of BRAF mutation in metastasized papillary thyroid cancer in lymph nodes. J Clin Endocrinol Metab. 2005;90:5265–5269.[PubMed]
  • 25. Oler G. Ebina KN. Michaluart P., Jr Kimura ET. Cerutti J. Investigation of BRAF mutation in a series of papillary thyroid carcinoma and matched-lymph node metastasis reveals a new mutation in metastasis. Clin Endocrinol (Oxf) 2005;62:509–511.[PubMed]
  • 26. Shayesteh L. Lu Y. Kuo WL. Baldocchi R. Godfrey T. Collins C. Pinkel D. Powell B. Mills GB. Gray JW. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet. 1999;21:99–102.[PubMed]
  • 27. Liu D. Mambo E. Ladenson PW. Xing M. Letter re: uncommon mutation but common amplifications of the PIK3CA gene in thyroid tumors. J Clin Endocrinol Metab. 2005;90:5509.[PubMed]
  • 28. Wang Y. Hou P. Yu H. Wang W. Ji M. Zhao S. Yan S. Sun X. Liu D. Shi B. Zhu G. Condouris S. Xing M. High prevalence and mutual exclusivity of genetic alterations in the phosphatidylinositol-3-kinase/akt pathway in thyroid tumors. J Clin Endocrinol Metab. 2007;92:2387–2390.[PubMed]
  • 29. Ma YY. Wei SJ. Lin YC. Lung JC. Chang TC. Whang-Peng J. Liu JM. Yang DM. Yang WK. Shen CY. PIK3CA as an oncogene in cervical cancer. Oncogene. 2000;19:2739–2744.[PubMed]
  • 30. Bertelsen BI. Steine SJ. Sandvei R. Molven A. Laerum OD. Molecular analysis of the PI3K-AKT pathway in uterine cervical neoplasia: frequent PIK3CA amplification and AKT phosphorylation. Int J Cancer. 2006;118:1877–1883.[PubMed]
  • 31. Ried T. Heselmeyer-Haddad K. Blegen H. Schröck E. Auer G. Genomic changes defining the genesis, progression, and malignancy potential in solid human tumors: a phenotype/genotype correlation. Genes Chromosomes Cancer. 1999;25:195–204.[PubMed]
  • 32. Woenckhaus J. Steger K. Werner E. Fenic I. Gamerdinger U. Dreyer T. Stahl U. Genomic gain of PIK3CA and increased expression of p110alpha are associated with progression of dysplasia into invasive squamous cell carcinoma. J Pathol. 2002;198:335–342.[PubMed]
  • 33. Fendri A. Khabir A. Mnejja W. Sellami-Boudawara T. Daoud J. Frikha M. Ghorbel A. Gargouri A. Mokdad-Gargouri R. PIK3CA amplification is predictive of poor prognosis in Tunisian patients with nasopharyngeal carcinoma. Cancer Sci. 2009;100:2034–2039.[PubMed]
  • 34. Malumbres M. Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3:459–465.[PubMed]
  • 35. Saxena N. Lahiri SS. Hambarde S. Tripathi RP. RAS: target for cancer therapy. Cancer Invest. 2008;26:948–955.[PubMed]
  • 36. Zhu Z. Gandhi M. Nikiforova MN. Fischer AH. Nikiforov YE. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol. 2003;120:71–77.[PubMed]
  • 37. Vasko V. Ferrand M. Di Cristofaro J. Carayon P. Henry JF. de Micco C. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J Clin Endocrinol Metab. 2003;88:2745–2752.[PubMed]
  • 38. Cantara S. Capezzone M. Marchisotta S. Capuano S. Busonero G. Toti P. Di Santo A. Caruso G. Carli AF. Brilli L. Montanaro A. Pacini F. Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J Clin Endocrinol Metab. 2010;95:1365–1369.[PubMed]
  • 39. Volante M. Rapa I. Gandhi M. Bussolati G. Giachino D. Papotti M. Nikiforov YE. RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J Clin Endocrinol Metab. 2009;94:4735–4741.[PubMed]
  • 40. Cyniak-Magierska A. Brzeziańska E. Januszkiewicz-Caulier J. Jarzab B. Lewiński A. Prevalence of RAS point mutations in papillary thyroid carcinoma; a novel mutation at codon 31 of K-RAS. Exp Clin Endocrinol Diabetes. 2007;115:594–599.[PubMed]
  • 41. Bond JA. Wyllie FS. Rowson J. Radulescu A. Wynford-Thomas D. In vitro reconstruction of tumour initiation in a human epithelium. Oncogene. 1994;9:281–290.[PubMed]
  • 42. Gire V. Wynford-Thomas D. RAS oncogene activation induces proliferation in normal human thyroid epithelial cells without loss of differentiation. Oncogene. 2000;19:737–744.[PubMed]
  • 43. Miller KA. Yeager N. Baker K. Liao XH. Refetoff S. Di Cristofano A. Oncogenic Kras requires simultaneous PI3K signaling to induce ERK activation and transform thyroid epithelial cells in vivo. Cancer Res. 2009;69:3689–3694.
  • 44. Rodriguez-Viciana P. Warne PH. Dhand R. Vanhaesebroeck B. Gout I. Fry MJ. Waterfield MD. Downward J. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature. 1994;370:527–532.[PubMed]
  • 45. Rodriguez-Viciana P. Warne PH. Vanhaesebroeck B. Waterfield MD. Downward J. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J. 1996;15:2442–2451.
  • 46. Gupta S. Ramjaun AR. Haiko P. Wang Y. Warne PH. Nicke B. Nye E. Stamp G. Alitalo K. Downward J. Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell. 2007;129:957–968.[PubMed]
  • 47. Haigis KM. Kendall KR. Wang Y. Cheung A. Haigis MC. Glickman JN. Niwa Kawakita M. Sweet-Cordero A. Sebolt-Leopold J. Shannon KM. Settleman J. Giovannini M. Jacks T. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat Genet. 2008;40:600–608.
  • 48. Garcia-Rostan G. Zhao H. Camp RL. Pollan M. Herrero A. Pardo J. Wu R. Carcangiu ML. Costa J. Tallini G. Ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol. 2003;21:3226–3235.[PubMed]
  • 49. Costa AM. Herrero A. Fresno MF. Heymann J. Alvarez JA. Cameselle-Teijeiro J. García-Rostán G. BRAF mutation associated with other genetic events identifies a subset of aggressive papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2008;68:618–634.[PubMed]
  • 50. Gustafson S. Zbuk KM. Scacheri C. Eng C. Cowden syndrome. Semin Oncol. 2007;34:428–434.[PubMed]
  • 51. Dahia PL. Marsh DJ. Zheng Z. Zedenius J. Komminoth P. Frisk T. Wallin G. Parsons R. Longy M. Larsson C. Eng C. Somatic deletions and mutations in the Cowden disease gene, PTEN, in sporadic thyroid tumors. Cancer Res. 1997;57:4710–4713.[PubMed]
  • 52. Halachmi N. Halachmi S. Evron E. Cairns P. Okami K. Saji M. Westra WH. Zeiger MA. Jen J. Sidransky D. Somatic mutations of the PTEN tumor suppressor gene in sporadic follicular thyroid tumors. Genes Chromosomes Cancer. 1998;23:239–243.[PubMed]
  • 53. Alvarez-Nuñez F. Bussaglia E. Mauricio D. Ybarra J. Vilar M. Lerma E. de Leiva A. Matias-Guiu X. Thyroid Neoplasia Study Group 2006 PTEN promoter methylation in sporadic thyroid carcinomas. Thyroid. 16:17–23.[PubMed]
  • 54. Schagdarsurengin U. Gimm O. Dralle H. Hoang-Vu C. Dammann R. CpG island methylation of tumor-related promoters occurs preferentially in undifferentiated carcinoma. Thyroid. 2006;16:633–642.[PubMed]
  • 55. Hou P. Ji M. Xing M. Association of PTEN gene methylation with genetic alterations in the phosphatidylinositol 3-kinase/AKT signaling pathway in thyroid tumors. Cancer. 2008;113:2440–2447.[PubMed]
  • 56. Xing MGene methylation in thyroid tumorigenesis. Endocrinology. 2007;148:948–953.[PubMed][Google Scholar]
  • 57. Bruni P. Boccia A. Baldassarre G. Trapasso F. Santoro M. Chiappetta G. Fusco A. Viglietto G. PTEN expression is reduced in a subset of sporadic thyroid carcinomas: evidence that PTEN-growth suppressing activity in thyroid cancer cells mediated by p27kip1. Oncogene. 2000;19:3146–3155.[PubMed]
  • 58. Frisk T. Foukakis T. Dwight T. Lundberg J. Höög A. Wallin G. Eng C. Zedenius J. Larsson C. Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid cancer. Genes Chromosomes Cancer. 2002;35:74–80.[PubMed]
  • 59. Santoro M. Melillo RM. Fusco A. RET/PTC activation in papillary thyroid carcinoma: European Journal of Endocrinology Prize Lecture. Eur J Endocrinol. 2006;155:645–653.[PubMed]
  • 60. Miyagi E. Braga-Basaria M. Hardy E. Vasko V. Burman KD. Jhiang S. Saji M. Ringel MD. Chronic expression of RET/PTC 3 enhances basal and insulin-stimulated PI3 kinase/AKT signaling and increases IRS-2 expression in FRTL-5 thyroid cells. Mol Carcinog. 2004;41:98–107.[PubMed]
  • 61. Castellone MD. De Falco V. Rao DM. Bellelli R. Muthu M. Basolo F. Fusco A. Gutkind JS. Santoro M. The beta-catenin axis integrates multiple signals downstream from RET/papillary thyroid carcinoma leading to cell proliferation. Cancer Res. 2009;69:1867–1876.
  • 62. Hayashi H. Ichihara M. Iwashita T. Murakami H. Shimono Y. Kawai K. Kurokawa K. Murakumo Y. Imai T. Funahashi H. Nakao A. Takahashi M. Characterization of intracellular signals via tyrosine 1062 in RET activated by glial cell line-derived neurotrophic factor. Oncogene. 2000;19:4469–4475.[PubMed]
  • 63. Segouffin-Cariou C. Billaud M. Transforming ability of MEN2A-RET requires activation of the phosphatidylinositol 3-kinase/AKT signaling pathway. J Biol Chem. 2000;275:3568–3576.[PubMed]
  • 64. Kim DW. Hwang JH. Suh JM. Kim H. Song JH. Hwang ES. Hwang IY. Park KC. Chung HK. Kim JM. Park J. Hemmings BA. Shong M. RET/PTC (rearranged in transformation/papillary thyroid carcinomas) tyrosine kinase phosphorylates and activates phosphoinositide-dependent kinase 1 (PDK1): an alternative phosphatidylinositol 3-kinase-independent pathway to activate PDK1. Mol Endocrinol. 2003;17:1382–1394.[PubMed]
  • 65. Jung HS. Kim DW. Jo YS. Chung HK. Song JH. Park JS. Park KC. Park SH. Hwang JH. Jo KW. Shong M. Regulation of protein kinase B tyrosine phosphorylation by thyroid-specific oncogenic RET/PTC kinases. Mol Endocrinol. 2005;19:2748–2759.[PubMed]
  • 66. Xu X. Quiros RM. Gattuso P. Ain KB. Prinz RA. High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res. 2003;63:4561–4567.[PubMed]
  • 67. Zhu Z. Ciampi R. Nikiforova MN. Gandhi M. Nikiforov YE. Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab. 2006;91:3603–3610.[PubMed]
  • 68. Henderson YC. Shellenberger TD. Williams MD. El-Naggar AK. Fredrick MJ. Cieply KM. Clayman GL. High rate of BRAF and RET/PTC dual mutations associated with recurrent papillary thyroid carcinoma. Clin Cancer Res. 2009;15:485–491.
  • 69. Ishizaka Y. Kobayashi S. Ushijima T. Hirohashi S. Sugimura T. Nagao M. Detection of retTPC/PTC transcripts in thyroid adenomas and adenomatous goiter by an RT-PCR method. Oncogene. 1991;6:1667–1672.[PubMed]
  • 70. Elisei R. Romei C. Vorontsova T. Cosci B. Veremeychik V. Kuchinskaya E. Basolo F. Demidchik EP. Miccoli P. Pinchera A. Pacini F. RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab. 2001;86:3211–3216.[PubMed]
  • 71. Arora N. Scognamiglio T. Zhu B. Fahey TJ., 3rd Do benign thyroid nodules have malignant potential? An evidence-based review. World J Surg. 2008;32:1237–1246.[PubMed]
  • 72. Wirtschafter A. Schmidt R. Rosen D. Kundu N. Santoro M. Fusco A. Multhaupt H. Atkins J. Rosen M. Keane W. Rothstein JL. Expression of the RET/PTC fusion gene as a marker for papillary carcinoma in Hashimoto's thyroiditis. Laryngoscope. 1997;107:95–100.[PubMed]
  • 73. Sheils OM. O'Eary JJ. Uhlmann V. Lattich K. Sweeney EC. RET/PTC-1 activation in Hashimoto thyroiditis. Int J Surg Pathol. 2000;8:185–189.[PubMed]
  • 74. Rhoden KJ. Unger K. Salvatore G. Yilmaz Y. Vovk V. Chiappetta G. Qumsiyeh MB. Rothstein JL. Fusco A. Santoro M. Zitzelsberger H. Tallini G. RET/papillary thyroid cancer rearrangement in nonneoplastic thyrocytes: follicular cells of Hashimoto's thyroiditis share low-level recombination events with a subset of papillary carcinoma. J Clin Endocrinol Metab. 2006;91:2414–2423.[PubMed]
  • 75. Salvatore G. Chiappetta G. Nikiforov YE. Decaussin-Petrucci M. Fusco A. Carney JA. Santoro M. Molecular profile of hyalinizing trabecular tumours of the thyroid: high prevalence of RET/PTC rearrangements and absence of B-raf and N-Ras point mutations. Eur J Cancer. 2005;41:816–821.[PubMed]
  • 76. Carney JA. Hirokawa M. Lloyd RV. Papotti M. Sebo TJ. Hyalinizing trabecular tumors of the thyroid gland are almost all benign. Am J Surg Pathol. 2008;32:1877–1889.[PubMed]
  • 77. Parsons DW. Wang TL. Samuels Y. Bardelli A. Cummins JM. DeLong L. Silliman N. Ptak J. Szabo S. Willson JK. Markowitz S. Kinzler KW. Vogelstein B. Lengauer C. Velculescu VE. Colorectal cancer: mutations in a signalling pathway. Nature. 2005;436:792.[PubMed]
  • 78. Lengyel E. Sawada K. Salgia R. Tyrosine kinase mutations in human cancer. Curr Mol Med. 2007;7:77–84.[PubMed]
  • 79. Kondo T. Ezzat S. Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer. 2006;6:292–306.[PubMed]
  • 80. Kroll TG. Sarraf P. Pecciarini L. Chen CJ. Mueller E. Spiegelman BM. Fletcher JA. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma. Science. 2000;289:1357–1360.[PubMed]
  • 81. Eberhardt NL. Grebe SK. McIver B. Reddi HV. The role of the PAX8/PPARgamma fusion oncogene in the pathogenesis of follicular thyroid cancer. Mol Cell Endocrinol. 2009;321:50–56.
  • 82. Farrow B. Evers BM. Activation of PPARgamma increases PTEN expression in pancreatic cancer cells. Biochem Biophys Res Commun. 2003;301:50–53.[PubMed]
  • 83. Furuya F. Hanover JA. Cheng SY. Activation of phosphatidylinositol 3-kinase signaling by a mutant thyroid hormone beta receptor. Proc Natl Acad Sci USA. 2006;103:1780–1785.
  • 84. Ringel MD. Hayre N. Saito J. Saunier B. Schuppert F. Burch H. Bernet V. Burman KD. Kohn LD. Saji M. Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res. 2001;61:6105–6111.[PubMed]
  • 85. Vasko V. Saji M. Hardy E. Kruhlak M. Larin A. Savchenko V. Miyakawa M. Isozaki O. Murakami H. Tsushima T. Burman KD. De Micco C. Ringel MD. Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J Med Genet. 2004;41:161–170.
  • 86. Dankort D. Curley DP. Cartlidge RA. Nelson B. Karnezis AN. Damsky WE., Jr You MJ. DePinho RA. McMahon M. Bosenberg M. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet. 2009;41:544–552.
  • 87. Nikiforov YE. Steward DL. Robinson-Smith TM. Haugen BR. Klopper JP. Zhu Z. Fagin JA. Falciglia M. Weber K. Nikiforova MN. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab. 2009;94:2092–2098.[PubMed]
  • 88. Ohori NP. Nikiforova MN. Schoedel KE. LeBeau SO. Hodak SP. Seethala RR. Carty SE. Ogilvie JB. Yip L. Nikiforov YE. Contribution of molecular testing to thyroid fine-needle aspiration cytology of “follicular lesion of undetermined significance/atypia of undetermined significance” Cancer Cytopathol. 2010;118:17–23.[PubMed]
  • 89. Xing MGenetic-targeted therapy of thyroid cancer: a real promise. Thyroid. 2009;19:805–809.[PubMed][Google Scholar]
  • 90. Salerno P. De Falco V. Tamburrino A. Nappi TC. Vecchio G. Schweppe RE. Bollag G. Santoro M. Salvatore G. Cytostatic activity of adenosine triphosphate-competitive kinase inhibitors in BRAF mutant thyroid carcinoma cells. J Clin Endocrinol Metab. 2010;95:450–455.[PubMed]
  • 91. Liu D. Hou P. Liu Z. Wu G. Xing M. Genetic alterations in the phosphoinositide 3-kinase/Akt signaling pathway confer sensitivity of thyroid cancer cells to therapeutic targeting of Akt and mammalian target of rapamycin. Cancer Res. 2009;69:7311–7319.
  • 92. Jin N. Jiang T. Rosen DM. Nelkin BD. Ball DW. Dual inhibition of mitogen-activated protein kinase kinase and mammalian target of rapamycin in differentiated and anaplastic thyroid cancer. J Clin Endocrinol Metab. 2009;94:4107–4112.
  • 93. Liu D. Xing J. Trink B. Xing M. BRAF mutation-selective inhibition of thyroid cancer cells by the novel MEK inhibitor RDEA119, genetic-potentiated synergism with the mTOR inhibitor temsirolimus. Int J Cancer [Epub ahead of Print] 2010
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.