Fabrication of highly effective mosquito nanolarvicides using an Asian plant of ethno-pharmacological interest, Priyangu (Aglaia elaeagnoidea): toxicity on non-target mosquito natural enemies.
Journal: 2017/April - Environmental Science and Pollution Research
ISSN: 1614-7499
Abstract:
Mosquitoes threaten the lives of humans, livestock, pets and wildlife around the globe, due to their ability to vector devastating diseases. Aglaia elaeagnoidea, commonly known as Priyangu, is widely employed in Asian traditional medicine and pest control. Medicinal activities include anti-inflammatory, analgesic, anticancer, and anesthetic actions. Flavaglines, six cyclopenta[b]benzofurans, a cyclopenta[bc]benzopyran, a benzo[b]oxepine, and an aromatic butyrolactone showed antifungal properties, and aglaroxin A and rocaglamide were effective to control moth pests. Here, we determined the larvicidal action of A. elaeagnoidea leaf aqueous extract. Furthermore, we focused on Priyangu-mediated synthesis of Ag nanoparticles toxic to Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi. The plant extract and the nanolarvicide were tested on three mosquito vectors, following the WHO protocol, as well as on three non-target mosquito predators. Priyangu-synthesized Ag nanoparticles were characterized by spectroscopic (UV, FTIR, XRD, and EDX) and microscopic (AFM, SEM, and TEM) analyses. Priyangu extract toxicity was moderate on Cx. quinquefasciatus (LC50 246.43; LC90 462.09 μg/mL), Ae. aegypti (LC50 229.79; LC90 442.71 μg/mL), and An. stephensi (LC50 207.06; LC90 408.46 μg/mL), respectively, while Priyangu-synthesized Ag nanoparticles were highly toxic to Cx. quinquefasciatus (LC50 24.91; LC90 45.96 μg/mL), Ae. aegypti (LC50 22.80; LC90 43.23 μg/mL), and An. stephensi (LC50 20.66; LC90 39.94 μg/mL), respectively. Priyangu extract and Ag nanoparticles were found safer to non-target larvivorous fishes, backswimmers, and waterbugs, with LC50 ranging from 1247 to 37,254.45 μg/mL, if compared to target pests. Overall, the current research represents a modern approach integrating traditional botanical pesticides and nanotechnology to the control of larval populations of mosquito vectors, with negligible toxicity against non-target including larvivorous fishes, backswimmers, and waterbugs.
Relations:
Affiliates
(3)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.