Evolutionary conservation of complexins: from choanoflagellates to mice.
Journal: 2016/July - EMBO Reports
ISSN: 1469-3178
Abstract:
Complexins are synaptic SNARE complex-binding proteins that cooperate with synaptotagmins in activating Ca(2+)-stimulated, synaptotagmin-dependent synaptic vesicle exocytosis and in clamping spontaneous, synaptotagmin-independent synaptic vesicle exocytosis. Here, we show that complexin sequences are conserved in some non-metazoan unicellular organisms and in all metazoans, suggesting that complexins are a universal feature of metazoans that predate metazoan evolution. We show that complexin from Nematostella vectensis, a cnidarian sea anemone far separated from mammals in metazoan evolution, functionally replaces mouse complexins in activating Ca(2+)-triggered exocytosis, but is unable to clamp spontaneous exocytosis. Thus, the activating function of complexins is likely conserved throughout metazoan evolution.
Relations:
Content
Citations
(6)
References
(31)
Grants
(2)
Chemicals
(5)
Organisms
(3)
Processes
(8)
Affiliates
(4)
Similar articles
Articles by the same authors
Discussion board
EMBO Rep 16(10): 1308-1317

Evolutionary conservation of complexins: from choanoflagellates to mice

Supporting information

Expanded View Figures PDF

Review Process File

Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
College of Biomedical Engineering, South‐Central University for Nationalities, Wuhan, China
Department of Biophysics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
Picower Center for Learning and Memory, MIT, Cambridge, MA, USA
Corresponding author.
Corresponding author. Tel: +86 15271869616; E‐mail: moc.liamtoh@ylfelttilnus,
Corresponding author. Tel: +1 650721418; E‐mail: ude.drofnats@1sct,
Received 2015 Mar 1; Revised 2015 Aug 9; Accepted 2015 Aug 11.
Click here for additional data file.(776K, pdf)

Review Process File

Click here for additional data file.(296K, pdf)
Click here for additional data file.(296K, pdf)

Notes

EMBO Reports (2015) 16: 1308–1317 [PMC free article] [PubMed] [Google Scholar]

Notes

References

  • 1. Südhof TC (2013) Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron80: 675–690
  • 2. Martin JA, Hu Z, Fenz KM, Fernandez J, Dittman JS (2011) Complexin has opposite effects on two modes of synaptic vesicle fusion. Curr Biol21: 97–105
  • 3. Xue M, Lin YQ, Pan H, Reim K, Deng H, Bellen HJ, Rosenmund C (2009) Tilting the balance between facilitatory and inhibitory functions of mammalian and Drosophila Complexins orchestrates synaptic vesicle exocytosis. Neuron64: 367–380
  • 4. Tang J, Maximov A, Shin OH, Dai H, Rizo J, Südhof TC (2006) A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell126: 1175–1187 [[PubMed]
  • 5. Maximov A, Tang J, Yang X, Pang ZP, Südhof TC (2009) Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science323: 516–521
  • 6. Cho RW, Song Y, Littleton JT (2010) Comparative analysis of Drosophila and mammalian complexins as fusion clamps and facilitators of neurotransmitter release. Mol Cell Neurosci45: 389–397
  • 7. Hobson RJ, Liu Q, Watanabe S, Jorgensen EM (2011) Complexin maintains vesicles in the primed state in C. elegans. Curr Biol21: 106–113
  • 8. Yang X, Kaeser‐Woo YJ, Pang ZP, Xu W, Südhof TC (2010) Complexin clamps asynchronous release by blocking a secondary Ca‐sensor via its accessory α‐helix. Neuron68: 907–920
  • 9. Giraudo CG, Eng WS, Melia TJ, Rothman JE (2006) A clamping mechanism involved in SNARE‐dependent exocytosis. Science313: 676–680 [[PubMed]
  • 10. Kyoung M, Srivastava A, Zhang Y, Diao J, Vrljic M, Grob P, Nogales E, Chu S, Brunger AT (2011) In vitro system capable of differentiating fast Ca‐triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release. Proc Natl Acad Sci USA108: E304–E313
  • 11. Malsam J, Seiler F, Schollmeier Y, Rusu P, Krause JM, Sollner TH (2009) The carboxy‐terminal domain of complexin I stimulates liposome fusion. Proc Natl Acad Sci USA106: 2001–2006
  • 12. Yoon TY, Lu X, Diao J, Lee SM, Ha T, Shin YK (2008) Complexin and Ca stimulate SNARE‐mediated membrane fusion. Nat Struct Mol Biol15: 707–713
  • 13. Buhl LK, Jorquera RA, Akbergenova Y, Huntwork‐Rodriguez S, Volfson D, Littleton JT (2013) Differential regulation of evoked and spontaneous neurotransmitter release by C‐terminal modifications of complexin. Mol Cell Neurosci52: 161–172
  • 14. Iyer J, Wahlmark CJ, Kuser‐Ahnert GA, Kawasaki F (2013) Molecular mechanisms of COMPLEXIN fusion clamp function in synaptic exocytosis revealed in a new Drosophila mutant. Mol Cell Neurosci56: 244–254
  • 15. Xue M, Reim K, Chen X, Chao HT, Deng H, Rizo J, Brose N, Rosenmund C (2007) Distinct domains of complexin I differentially regulate neurotransmitter release. Nat Struct Mol Biol14: 949–958
  • 16. Nakanishi N, Renfer E, Technau U, Rentzsch F (2012) Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms. Development139: 347–357 [[PubMed]
  • 17. Burkhardt P, Grønborg M, McDonald K, Sulur T, Wang Q, King N (2014) Evolutionary insights into premetazoan functions of the neuronal protein homer. Mol Biol Evol31: 2342–2355
  • 18. Kaeser‐Woo YJ, Yang X, Südhof TC (2012) C‐terminal complexin sequence is selectively required for clamping and priming but not for Ca‐triggering of synaptic exocytosis. J Neurosci32: 2877–2885
  • 19. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV et al (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science317: 86–94 [[PubMed]
  • 20. McMahon HT, Missler M, Li C, Südhof TC (1995) Complexins: cytosolic proteins that regulate SNAP receptor function. Cell83: 111–119 [[PubMed]
  • 21. Rosenmund C, Stevens CF (1996) Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron16: 1197–1207 [[PubMed]
  • 22. Maximov A, Südhof TC (2005) Autonomous function of synaptotagmin 1 in triggering synchronous release independent of asynchronous release. Neuron48: 547–554 [[PubMed]
  • 23. Xue M, Craig TK, Xu J, Chao HT, Rizo J, Rosenmund C (2010) Binding of the complexin N terminus to the SNARE complex potentiates synaptic‐vesicle fusogenicity. Nat Struct Mol Biol17: 568–575
  • 24. Reim K, Wegmeyer H, Brandstätter JH, Xue M, Rosenmund C, Dresbach T, Hofmann K, Brose N (2005) Structurally and functionally unique complexins at retinal ribbon synapses. J Cell Biol169: 669–680
  • 25. Wragg RT, Snead D, Dong Y, Ramlall TF, Menon I, Bai J, Eliezer D, Dittman JS (2013) Synaptic vesicles position complexin to block spontaneous fusion. Neuron77: 323–334
  • 26. Yang X, Cao P, Südhof TC (2013) Deconstructing complexin function in activating and clamping Ca‐triggered exocytosis by comparing knockout and knockdown phenotypes. Proc Natl Acad Sci USA110: 20777–20782
  • 27. Bacaj T, Ahmad M, Jurado S, Malenka RC, Südhof TC (2015) Synaptic function of Rab11Fip5: selective requirement for Hippocampal Long‐Term Depression. J Neurosci35: 7460–7474
  • 28. Reim K, Mansour M, Varoqueaux F, McMahon HT, Südhof TC, Brose N, Rosenmund C (2001) Complexins regulate a late step in Ca‐dependent neurotransmitter release. Cell104: 71–81 [[PubMed]
  • 29. Adachi J, Hasegawa M (1996) MOLPHY version 2.3, programs for molecular phylogenetics based on maximum likelihood. Computer Science Monographs 28. The Institute of Statistical Mathematics; pp. 1–150.
  • 30. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci8: 275–282 [[PubMed]
  • 31. Hasegawa M, Kishino H, Saitou N (1991) On the maximum likelihood method in molecular phylogenetics. J Mol Evol32: 443–445 [[PubMed]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.