Developmental mechanisms underlying pathology of arteries.
Journal: 1990/November - Physiological Reviews
ISSN: 0031-9333
PUBMED: 2217558
This review tries to provide a general, and very speculative, view of growth control mechanisms that may be common to the development of blood vessels and to pathological processes including cell proliferation. From a developmental point of view, vascular growth is most likely to include local autocrine or paracrine mechanisms that permit the two cells of the vessel wall to grow, organize into the characteristic tubular and layered structures of the vessel wall, and eventually achieve a return to quiescence. The "real" mechanisms controlling growth in vivo are difficult to ascertain from studies in culture. For example, a large list of angiogenesis molecules must be able to generate endothelial replication, but in culture many of these molecules are inhibitory for each endothelial replication. Similarly, in culture, we have a long list of smooth muscle mitogens, but none of these have as of yet been proven to control smooth muscle growth in vivo. Endothelial growth control has been attributed to the presence of membrane molecules able to inhibit endothelial replication and to the actions of soluble growth factors and their receptors. Unfortunately for the former hypothesis we still lack specific molecules with the properties of contact inhibition of replication. The data discussed here, however, suggest that modulation of expression or function of cell-cell adhesive molecules could be critical both to morphogenic changes and to mitogenesis by release of cells from cell-cell contact. Moreover, our data and data from other laboratories suggest that angiogenic factors, including the HBGFs and TGF-beta, may function in angiogenesis by altering cell-cell and cell-cell substrate interactions rather than via a primary effect on cell replication. This view of angiogenesis is consistent with the absence of a mitogenic effect of some angiogenic factors. Although endothelial cell replication is obviously necessary to angiogenesis, the lack of mitogenic effect of some factors suggests a need for a more general explanation of the actions of angiogenic factors. Endothelial injury may be interrelated with smooth muscle growth. The simplest possibility is that a failure of the endothelial cell barrier function, due either to denudation or an increase in adhesivity for leukocytes, would permit access of platelets or leukocytes to the vessel wall. These extrinsic cells, in turn, would stimulate smooth muscle cell replication by release of growth factors. The second possibility is that the endothelial cell may itself release growth factors into the vessel wall.(ABSTRACT TRUNCATED AT 400 WORDS)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.