Cryptotanshinone inhibits VEGF-induced angiogenesis by targeting the VEGFR2 signaling pathway.
Journal: 2017/October - Microvascular Research
ISSN: 1095-9319
Abstract:
Anti-angiogenesis has been proposed as an important strategy for angiogenesis-related diseases. Cryptotanshinone (CPT), an active component of Salvia miltiorrhiza, may be a potential inhibitor of angiogenesis. However, the molecular mechanisms underlying its anti-angiogenic activities remain poorly understood. This study is to investigate the effects of CPT on VEGF-induced angiogenesis and VEGFR2 signaling pathway in human umbilical vein endothelial cells (HUVECs).
HUVECs were treated with different concentration of CPT (5-20μmol/L) and the viability, endothelial cell migration, invasion, and tubular-like structure formation of HUVECs were detected by MTT, wound-healing migration, Transwell invasion and Matrigel tube formation assays, respectively. To assess the effect of CPT on VEGFR2 signaling pathway, VEGF-induced phosphorylation of VEGFR2 and its downstream molecules, including ERK1/2, p90RSK, Src and FAK were analyzed by Western blot.
CPT significantly suppressed VEGF-induced cells proliferation, migration, invasion, and tubular-like structure formation in HUVECs in a dose- and time-dependent manner. Western blot results revealed that CPT significantly suppressed VEGF-induced phosphorylation of VEGFR2 and its key downstream protein kinases, including p-ERK1/2, p-p90RSK, pY416-Src and pY576/577-FAK, which are responsible for endothelial cell migration, proliferation, and survival.
Our study suggested that CPT potently inhibits VEGF-induced angiogenesis by suppressing VEGFR2 activation and its downstream Src/FAK and ERK1/2 signaling pathways in HUVECs, highlighting the therapeutic potential for the treatment of angiogenesis-related diseases.
Relations:
Citations
(1)
Drugs
(1)
Chemicals
(9)
Genes
(2)
Organisms
(1)
Processes
(7)
Anatomy
(2)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.