Complete sequence of the mitochondrial DNA of the annelid worm Lumbricus terrestris.
Journal: 1996/February - Genetics
ISSN: 0016-6731
PUBMED: 8536978
Abstract:
We have determined the complete nucleotide (nt) sequence of the mitochondrial genome of an oligochaete annelid, the earthworm Lumbricus terrestris. This genome contains the 37 genes typical of metazoan mitochondrial DNA (mtDNA), including ATPase8, which is missing from some invertebrate mtDNAs. ATPase8 is not immediately upstream of ATPase6, a condition found previously only in the mtDNA of snails. All genes are transcribed from the same DNA strand. The largest noncoding region is 384 nt and is characterized by several homopolymer runs, a tract of alternating TA pairs, and potential secondary structures. All protein-encoding genes either overlap the adjacent downstream gene or end at an abbreviated stop codon. In Lumbricus mitochondria, the variation of the genetic code that is typical of most invertebrate mitochondrial genomes is used. Only the codon ATG is used for translation initiation. Lumbricus mtDNA is A + T rich, which appears to affect the codon usage pattern. The DHU arm appears to be unpaired not only in tRNAser(AGN), as is typical for metazoans, but perhaps also in tRNAser(UCN), a condition found previously only in a chiton and among nematodes. Relating the Lumbricus gene organization to those of other major protostome groups requires numerous rearrangements.
Relations:
Content
Citations
(31)
References
(58)
Chemicals
(4)
Genes
(13)
Organisms
(1)
Processes
(4)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Genetics 141(1): 305-319

Complete Sequence of the Mitochondrial DNA of the Annelid Worm Lumbricus Terrestris

Abstract

We have determined the complete nucleotide (nt) sequence of the mitochondrial genome of an oligochaete annelid, the earthworm Lumbricus terrestris. This genome contains the 37 genes typical of metazoan mitochondrial DNA (mtDNA), including ATPase8, which is missing from some invertebrate mtDNAs. ATPase8 is not immediately upstream of ATPase6, a condition found previously only in the mtDNA of snails. All genes are transcribed from the same DNA strand. The largest noncoding region is 384 nt and is characterized by several homopolymer runs, a tract of alternating TA pairs, and potential secondary structures. All protein-encoding genes either overlap the adjacent downstream gene or end at an abbreviated stop codon. In Lumbricus mitochondria, the variation of the genetic code that is typical of most invertebrate mitochondrial genomes is used. Only the codon ATG is used for translation initiation. Lumbricus mtDNA is A + T rich, which appears to affect the codon usage pattern. The DHU arm appears to be unpaired not only in tRNA(ser(AGN)), as is typical for metazoans, but perhaps also in tRNA(ser(UCN)), a condition found previously only in a chiton and among nematodes. Relating the Lumbricus gene organization to those of other major protostome groups requires numerous rearrangements.

Full Text

The Full Text of this article is available as a PDF (3.4M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. [PubMed] [Google Scholar]
  • Anderson S, de Bruijn MH, Coulson AR, Eperon IC, Sanger F, Young IG. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol. 1982 Apr 25;156(4):683–717. [PubMed] [Google Scholar]
  • Arnason U, Gullberg A. Comparison between the complete mtDNA sequences of the blue and the fin whale, two species that can hybridize in nature. J Mol Evol. 1993 Oct;37(4):312–322. [PubMed] [Google Scholar]
  • Arnason U, Gullberg A, Widegren B. The complete nucleotide sequence of the mitochondrial DNA of the fin whale, Balaenoptera physalus. J Mol Evol. 1991 Dec;33(6):556–568. [PubMed] [Google Scholar]
  • Asakawa S, Himeno H, Miura K, Watanabe K. Nucleotide sequence and gene organization of the starfish Asterina pectinifera mitochondrial genome. Genetics. 1995 Jul;140(3):1047–1060.[PMC free article] [PubMed] [Google Scholar]
  • Azevedo JL, Hyman BC. Molecular characterization of lengthy mitochondrial DNA duplications from the parasitic nematode Romanomermis culicivorax. Genetics. 1993 Apr;133(4):933–942.[PMC free article] [PubMed] [Google Scholar]
  • Battey J, Clayton DA. The transcription map of human mitochondrial DNA implicates transfer RNA excision as a major processing event. J Biol Chem. 1980 Dec 10;255(23):11599–11606. [PubMed] [Google Scholar]
  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA. Sequence and gene organization of mouse mitochondrial DNA. Cell. 1981 Oct;26(2 Pt 2):167–180. [PubMed] [Google Scholar]
  • Bonitz SG, Berlani R, Coruzzi G, Li M, Macino G, Nobrega FG, Nobrega MP, Thalenfeld BE, Tzagoloff A. Codon recognition rules in yeast mitochondria. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3167–3170.[PMC free article] [PubMed] [Google Scholar]
  • Boore JL, Brown WM. Complete DNA sequence of the mitochondrial genome of the black chiton, Katharina tunicata. Genetics. 1994 Oct;138(2):423–443.[PMC free article] [PubMed] [Google Scholar]
  • Boore JL, Collins TM, Stanton D, Daehler LL, Brown WM. Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature. 1995 Jul 13;376(6536):163–165. [PubMed] [Google Scholar]
  • Bridge D, Cunningham CW, Schierwater B, DeSalle R, Buss LW. Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8750–8753.[PMC free article] [PubMed] [Google Scholar]
  • Brown GG, Gadaleta G, Pepe G, Saccone C, Sbisà E. Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. J Mol Biol. 1986 Dec 5;192(3):503–511. [PubMed] [Google Scholar]
  • Cantatore P, Roberti M, Morisco P, Rainaldi G, Gadaleta MN, Saccone C. A novel gene order in the Paracentrotus lividus mitochondrial genome. Gene. 1987;53(1):41–54. [PubMed] [Google Scholar]
  • Cantatore P, Roberti M, Rainaldi G, Gadaleta MN, Saccone C. The complete nucleotide sequence, gene organization, and genetic code of the mitochondrial genome of Paracentrotus lividus. J Biol Chem. 1989 Jul 5;264(19):10965–10975. [PubMed] [Google Scholar]
  • Chang YS, Huang FL, Lo TB. The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial genome. J Mol Evol. 1994 Feb;38(2):138–155. [PubMed] [Google Scholar]
  • Clary DO, Wolstenholme DR. The ribosomal RNA genes of Drosophila mitochondrial DNA. Nucleic Acids Res. 1985 Jun 11;13(11):4029–4045.[PMC free article] [PubMed] [Google Scholar]
  • Clayton DA. Replication and transcription of vertebrate mitochondrial DNA. Annu Rev Cell Biol. 1991;7:453–478. [PubMed] [Google Scholar]
  • Clayton DA. Transcription and replication of animal mitochondrial DNAs. Int Rev Cytol. 1992;141:217–232. [PubMed] [Google Scholar]
  • Crozier RH, Crozier YC. The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics. 1993 Jan;133(1):97–117.[PMC free article] [PubMed] [Google Scholar]
  • de Bruijn MH. Drosophila melanogaster mitochondrial DNA, a novel organization and genetic code. Nature. 1983 Jul 21;304(5923):234–241. [PubMed] [Google Scholar]
  • Desjardins P, Morais R. Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J Mol Biol. 1990 Apr 20;212(4):599–634. [PubMed] [Google Scholar]
  • Dubin DT, HsuChen CC. Sequence and structure of a methionine transfer RNA from mosquito mitochondria. Nucleic Acids Res. 1984 May 25;12(10):4185–4189.[PMC free article] [PubMed] [Google Scholar]
  • Fuller KM, Zouros E. Dispersed discrete length polymorphism of mitochondrial DNA in the scallop Placopecten magellanicus (Gmelin). Curr Genet. 1993;23(4):365–369. [PubMed] [Google Scholar]
  • Gadaleta G, Pepe G, De Candia G, Quagliariello C, Sbisà E, Saccone C. The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol. 1989 Jun;28(6):497–516. [PubMed] [Google Scholar]
  • Garey JR, Wolstenholme DR. Platyhelminth mitochondrial DNA: evidence for early evolutionary origin of a tRNA(serAGN) that contains a dihydrouridine arm replacement loop, and of serine-specifying AGA and AGG codons. J Mol Evol. 1989 May;28(5):374–387. [PubMed] [Google Scholar]
  • Himeno H, Masaki H, Kawai T, Ohta T, Kumagai I, Miura K, Watanabe K. Unusual genetic codes and a novel gene structure for tRNA(AGYSer) in starfish mitochondrial DNA. Gene. 1987;56(2-3):219–230. [PubMed] [Google Scholar]
  • Hoffmann RJ, Boore JL, Brown WM. A novel mitochondrial genome organization for the blue mussel, Mytilus edulis. Genetics. 1992 Jun;131(2):397–412.[PMC free article] [PubMed] [Google Scholar]
  • Jacobs HT, Elliott DJ, Math VB, Farquharson A. Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol. 1988 Jul 20;202(2):185–217. [PubMed] [Google Scholar]
  • Janke A, Feldmaier-Fuchs G, Thomas WK, von Haeseler A, Päbo S. The marsupial mitochondrial genome and the evolution of placental mammals. Genetics. 1994 May;137(1):243–256.[PMC free article] [PubMed] [Google Scholar]
  • Johansen S, Guddal PH, Johansen T. Organization of the mitochondrial genome of Atlantic cod, Gadus morhua. Nucleic Acids Res. 1990 Feb 11;18(3):411–419.[PMC free article] [PubMed] [Google Scholar]
  • Jukes TH, Osawa S. The genetic code in mitochondria and chloroplasts. Experientia. 1990 Dec 1;46(11-12):1117–1126. [PubMed] [Google Scholar]
  • King TC, Low RL. Mapping of control elements in the displacement loop region of bovine mitochondrial DNA. J Biol Chem. 1987 May 5;262(13):6204–6213. [PubMed] [Google Scholar]
  • La Roche J, Snyder M, Cook DI, Fuller K, Zouros E. Molecular characterization of a repeat element causing large-scale size variation in the mitochondrial DNA of the sea scallop Placopecten magellanicus. Mol Biol Evol. 1990 Jan;7(1):45–64. [PubMed] [Google Scholar]
  • Lecanidou R, Douris V, Rodakis GC. Novel features of metazoan mtDNA revealed from sequence analysis of three mitochondrial DNA segments of the land snail Albinaria turrita (Gastropoda: Clausiliidae). J Mol Evol. 1994 Apr;38(4):369–382. [PubMed] [Google Scholar]
  • Mitchell SE, Cockburn AF, Seawright JA. The mitochondrial genome of Anopheles quadrimaculatus species A: complete nucleotide sequence and gene organization. Genome. 1993 Dec;36(6):1058–1073. [PubMed] [Google Scholar]
  • Montoya J, Christianson T, Levens D, Rabinowitz M, Attardi G. Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7195–7199.[PMC free article] [PubMed] [Google Scholar]
  • Moritz C, Brown WM. Tandem duplication of D-loop and ribosomal RNA sequences in lizard mitochondrial DNA. Science. 1986 Sep 26;233(4771):1425–1427. [PubMed] [Google Scholar]
  • Moritz C, Brown WM. Tandem duplications in animal mitochondrial DNAs: variation in incidence and gene content among lizards. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7183–7187.[PMC free article] [PubMed] [Google Scholar]
  • Ojala D, Merkel C, Gelfand R, Attardi G. The tRNA genes punctuate the reading of genetic information in human mitochondrial DNA. Cell. 1980 Nov;22(2 Pt 2):393–403. [PubMed] [Google Scholar]
  • Okimoto R, Macfarlane JL, Wolstenholme DR. Evidence for the frequent use of TTG as the translation initiation codon of mitochondrial protein genes in the nematodes, Ascaris suum and Caenorhabditis elegans. Nucleic Acids Res. 1990 Oct 25;18(20):6113–6118.[PMC free article] [PubMed] [Google Scholar]
  • Okimoto R, Chamberlin HM, Macfarlane JL, Wolstenholme DR. Repeated sequence sets in mitochondrial DNA molecules of root knot nematodes (Meloidogyne): nucleotide sequences, genome location and potential for host-race identification. Nucleic Acids Res. 1991 Apr 11;19(7):1619–1626.[PMC free article] [PubMed] [Google Scholar]
  • Okimoto R, Macfarlane JL, Clary DO, Wolstenholme DR. The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics. 1992 Mar;130(3):471–498.[PMC free article] [PubMed] [Google Scholar]
  • Pritchard AE, Seilhamer JJ, Mahalingam R, Sable CL, Venuti SE, Cummings DJ. Nucleotide sequence of the mitochondrial genome of Paramecium. Nucleic Acids Res. 1990 Jan 11;18(1):173–180.[PMC free article] [PubMed] [Google Scholar]
  • Roe BA, Ma DP, Wilson RK, Wong JF. The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J Biol Chem. 1985 Aug 15;260(17):9759–9774. [PubMed] [Google Scholar]
  • Smith MJ, Arndt A, Gorski S, Fajber E. The phylogeny of echinoderm classes based on mitochondrial gene arrangements. J Mol Evol. 1993 Jun;36(6):545–554. [PubMed] [Google Scholar]
  • Snyder M, Fraser AR, Laroche J, Gartner-Kepkay KE, Zouros E. Atypical mitochondrial DNA from the deep-sea scallop Placopecten magellanicus. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7595–7599.[PMC free article] [PubMed] [Google Scholar]
  • Stanton DJ, Daehler LL, Moritz CC, Brown WM. Sequences with the potential to form stem-and-loop structures are associated with coding-region duplications in animal mitochondrial DNA. Genetics. 1994 May;137(1):233–241.[PMC free article] [PubMed] [Google Scholar]
  • Tzeng CS, Hui CF, Shen SC, Huang PC. The complete nucleotide sequence of the Crossostoma lacustre mitochondrial genome: conservation and variations among vertebrates. Nucleic Acids Res. 1992 Sep 25;20(18):4853–4858.[PMC free article] [PubMed] [Google Scholar]
  • Ramón Valverde J, Batuecas B, Moratilla C, Marco R, Garesse R. The complete mitochondrial DNA sequence of the crustacean Artemia franciscana. J Mol Evol. 1994 Oct;39(4):400–408. [PubMed] [Google Scholar]
  • Wallis GP. Mitochondrial DNA insertion polymorphism and germ line heteroplasmy in the Triturus cristatus complex. Heredity (Edinb) 1987 Apr;58(Pt 2):229–238. [PubMed] [Google Scholar]
  • Wolstenholme DR. Animal mitochondrial DNA: structure and evolution. Int Rev Cytol. 1992;141:173–216. [PubMed] [Google Scholar]
  • Wolstenholme DR, Macfarlane JL, Okimoto R, Clary DO, Wahleithner JA. Bizarre tRNAs inferred from DNA sequences of mitochondrial genomes of nematode worms. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1324–1328.[PMC free article] [PubMed] [Google Scholar]
  • Wong TW, Clayton DA. In vitro replication of human mitochondrial DNA: accurate initiation at the origin of light-strand synthesis. Cell. 1985 Oct;42(3):951–958. [PubMed] [Google Scholar]
  • Yokobori S, Ueda T, Watanabe K. Codons AGA and AGG are read as glycine in ascidian mitochondria. J Mol Evol. 1993 Jan;36(1):1–8. [PubMed] [Google Scholar]
  • Yokogawa T, Watanabe Y, Kumazawa Y, Ueda T, Hirao I, Miura K, Watanabe K. A novel cloverleaf structure found in mammalian mitochondrial tRNA(Ser) (UCN). Nucleic Acids Res. 1991 Nov 25;19(22):6101–6105.[PMC free article] [PubMed] [Google Scholar]
  • Zevering CE, Moritz C, Heideman A, Sturm RA. Parallel origins of duplications and the formation of pseudogenes in mitochondrial DNA from parthenogenetic lizards (Heteronotia binoei; Gekkonidae). J Mol Evol. 1991 Nov;33(5):431–441. [PubMed] [Google Scholar]
  • Ziaie Z, Suyama Y. The cytochrome oxidase subunit I gene of Tetrahymena: a 57 amino acid NH2-terminal extension and a 108 amino acid insert. Curr Genet. 1987;12(5):357–368. [PubMed] [Google Scholar]
Present address: Department of Cell Biology and Neuroanatomy, University of Minnesota, 4-135 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455.
Present address: Department of Cell Biology and Neuroanatomy, University of Minnesota, 4-135 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455.

Abstract

We have determined the complete nucleotide (nt) sequence of the mitochondrial genome of an oligochaete annelid, the earthworm Lumbricus terrestris. This genome contains the 37 genes typical of metazoan mitochondrial DNA (mtDNA), including ATPase8, which is missing from some invertebrate mtDNAs. ATPase8 is not immediately upstream of ATPase6, a condition found previously only in the mtDNA of snails. All genes are transcribed from the same DNA strand. The largest noncoding region is 384 nt and is characterized by several homopolymer runs, a tract of alternating TA pairs, and potential secondary structures. All protein-encoding genes either overlap the adjacent downstream gene or end at an abbreviated stop codon. In Lumbricus mitochondria, the variation of the genetic code that is typical of most invertebrate mitochondrial genomes is used. Only the codon ATG is used for translation initiation. Lumbricus mtDNA is A + T rich, which appears to affect the codon usage pattern. The DHU arm appears to be unpaired not only in tRNA(ser(AGN)), as is typical for metazoans, but perhaps also in tRNA(ser(UCN)), a condition found previously only in a chiton and among nematodes. Relating the Lumbricus gene organization to those of other major protostome groups requires numerous rearrangements.

Abstract
Full Text
Selected References
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.