Complete sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome: early establishment of the vertebrate genome organization.
Journal: 1995/May - Genetics
ISSN: 0016-6731
PUBMED: 7713438
Abstract:
The complete nucleotide sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome has been determined. The lamprey genome is 16,201 bp in length and contains genes for 13 proteins, two rRNAs, 22 tRNAs and two major noncoding regions. The order and transcriptional polarities of protein-coding genes are basically identical to those of other chordate mtDNAs, demonstrating that the common mitochondrial gene organization of vertebrates was established at an early stage of vertebrate evolution. The two major noncoding regions are separated by two tRNA genes. The first region probably functions as the control region because it contains distinctive conserved sequence blocks (CSB-II and III) common to other vertebrate control regions. The central conserved domain observed in other vertebrate control regions is not found in the lamprey, suggesting that it is a recently evolved functional domain in vertebrates. Noncoding segments are not found in the expected position of the origin of replication for the second strand, suggesting either that one of the tRNA genes has a dual function or that the second noncoding region may function as the second-strand origin. The base composition at the wobble positions of fourfold degenerate codon families is highly biased toward thymine (32.7%). Values of GC- and AT-skew are typical of vertebrate mitochondrial genomes.
Relations:
Content
Citations
(41)
References
(21)
Chemicals
(4)
Genes
(13)
Organisms
(2)
Processes
(8)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Genetics 139(2): 873-887

Complete Sequence of a Sea Lamprey (Petromyzon Marinus) Mitochondrial Genome: Early Establishment of the Vertebrate Genome Organization

Abstract

The complete nucleotide sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome has been determined. The lamprey genome is 16,201 bp in length and contains genes for 13 proteins, two rRNAs, 22 tRNAs and two major noncoding regions. The order and transcriptional polarities of protein-coding genes are basically identical to those of other chordate mtDNAs, demonstrating that the common mitochondrial gene organization of vertebrates was established at an early stage of vertebrate evolution. The two major noncoding regions are separated by two tRNA genes. The first region probably functions as the control region because it contains distinctive conserved sequence blocks (CSB-II and III) common to other vertebrate control regions. The central conserved domain observed in other vertebrate control regions is not found in the lamprey, suggesting that it is a recently evolved functional domain in vertebrates. Noncoding segments are not found in the expected position of the origin of replication for the second strand, suggesting either that one of the tRNA genes has a dual function or that the second noncoding region may function as the second-strand origin. The base composition at the wobble positions of fourfold degenerate codon families is highly biased toward thymine (32.7%). Values of GC-and AT-skew are typical of vertebrate mitochondrial genomes.genomes.

Full Text

The Full Text of this article is available as a PDF (1.3M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. [PubMed] [Google Scholar]
  • Arnason E, Rand DM. Heteroplasmy of short tandem repeats in mitochondrial DNA of Atlantic cod, Gadus morhua. Genetics. 1992 Sep;132(1):211–220.[PMC free article] [PubMed] [Google Scholar]
  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA. Sequence and gene organization of mouse mitochondrial DNA. Cell. 1981 Oct;26(2 Pt 2):167–180. [PubMed] [Google Scholar]
  • Cabot EL, Beckenbach AT. Simultaneous editing of multiple nucleic acid and protein sequences with ESEE. Comput Appl Biosci. 1989 Jul;5(3):233–234. [PubMed] [Google Scholar]
  • Cantatore P, Roberti M, Rainaldi G, Saccone C, Gadaleta MN. Clustering of tRNA genes in Paracentrotus lividus mitochondrial DNA. Curr Genet. 1988;13(1):91–96. [PubMed] [Google Scholar]
  • Clary DO, Wolstenholme DR. The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol. 1985;22(3):252–271. [PubMed] [Google Scholar]
  • Crozier RH, Crozier YC. The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics. 1993 Jan;133(1):97–117.[PMC free article] [PubMed] [Google Scholar]
  • Desjardins P, Morais R. Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J Mol Biol. 1990 Apr 20;212(4):599–634. [PubMed] [Google Scholar]
  • Hoelzel AR. Evolution by DNA turnover in the control region of vertebrate mitochondrial DNA. Curr Opin Genet Dev. 1993 Dec;3(6):891–895. [PubMed] [Google Scholar]
  • Hoffmann RJ, Boore JL, Brown WM. A novel mitochondrial genome organization for the blue mussel, Mytilus edulis. Genetics. 1992 Jun;131(2):397–412.[PMC free article] [PubMed] [Google Scholar]
  • Jacobs HT, Elliott DJ, Math VB, Farquharson A. Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol. 1988 Jul 20;202(2):185–217. [PubMed] [Google Scholar]
  • Janke A, Feldmaier-Fuchs G, Thomas WK, von Haeseler A, Päbo S. The marsupial mitochondrial genome and the evolution of placental mammals. Genetics. 1994 May;137(1):243–256.[PMC free article] [PubMed] [Google Scholar]
  • Lansman RA, Shade RO, Shapira JF, Avise JC. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. III. Techniques and potential applications. J Mol Evol. 1981;17(4):214–226. [PubMed] [Google Scholar]
  • Levinson G, Gutman GA. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol. 1987 May;4(3):203–221. [PubMed] [Google Scholar]
  • Okimoto R, Macfarlane JL, Clary DO, Wolstenholme DR. The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. Genetics. 1992 Mar;130(3):471–498.[PMC free article] [PubMed] [Google Scholar]
  • Roe BA, Ma DP, Wilson RK, Wong JF. The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J Biol Chem. 1985 Aug 15;260(17):9759–9774. [PubMed] [Google Scholar]
  • Sidow A, Thomas WK. A molecular evolutionary framework for eukaryotic model organisms. Curr Biol. 1994 Jul 1;4(7):596–603. [PubMed] [Google Scholar]
  • Smith MJ, Arndt A, Gorski S, Fajber E. The phylogeny of echinoderm classes based on mitochondrial gene arrangements. J Mol Evol. 1993 Jun;36(6):545–554. [PubMed] [Google Scholar]
  • Stock DW, Whitt GS. Evidence from 18S ribosomal RNA sequences that lampreys and hagfishes form a natural group. Science. 1992 Aug 7;257(5071):787–789. [PubMed] [Google Scholar]
  • Tzeng CS, Hui CF, Shen SC, Huang PC. The complete nucleotide sequence of the Crossostoma lacustre mitochondrial genome: conservation and variations among vertebrates. Nucleic Acids Res. 1992 Sep 25;20(18):4853–4858.[PMC free article] [PubMed] [Google Scholar]
  • Walberg MW, Clayton DA. Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acids Res. 1981 Oct 24;9(20):5411–5421.[PMC free article] [PubMed] [Google Scholar]
Department of Zoology and Center for Marine Biology, University of New Hampshire, Durham, New Hampshire 03824
Department of Zoology and Center for Marine Biology, University of New Hampshire, Durham, New Hampshire 03824

Abstract

The complete nucleotide sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome has been determined. The lamprey genome is 16,201 bp in length and contains genes for 13 proteins, two rRNAs, 22 tRNAs and two major noncoding regions. The order and transcriptional polarities of protein-coding genes are basically identical to those of other chordate mtDNAs, demonstrating that the common mitochondrial gene organization of vertebrates was established at an early stage of vertebrate evolution. The two major noncoding regions are separated by two tRNA genes. The first region probably functions as the control region because it contains distinctive conserved sequence blocks (CSB-II and III) common to other vertebrate control regions. The central conserved domain observed in other vertebrate control regions is not found in the lamprey, suggesting that it is a recently evolved functional domain in vertebrates. Noncoding segments are not found in the expected position of the origin of replication for the second strand, suggesting either that one of the tRNA genes has a dual function or that the second noncoding region may function as the second-strand origin. The base composition at the wobble positions of fourfold degenerate codon families is highly biased toward thymine (32.7%). Values of GC-and AT-skew are typical of vertebrate mitochondrial genomes.genomes.

Abstract
Full Text
Selected References
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.