Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure.
Journal: 1992/October - Proceedings of the National Academy of Sciences of the United States of America
ISSN: 0027-8424
PUBMED: 1356268
Abstract:
The phylogenetic relationships of the Recent cnidarian classes remain one of the classic problems in invertebrate zoology. We survey the structure of the mitochondrial genome in representatives of the four extant cnidarian classes and in the phylum Ctenophora. We find that all anthozoan species tested possess mtDNA in the form of circular molecules, whereas all scyphozoan, cubozoan, and hydrozoan species tested display mtDNA in the form of linear molecules. Because ctenophore and all other known metazoan mtDNA is circular, the shared occurrence of linear mtDNA in three of the four cnidarian classes suggests a basal position for the Anthozoa within the phylum.
Relations:
Content
Citations
(67)
References
(7)
Drugs
(1)
Chemicals
(4)
Genes
(14)
Organisms
(2)
Processes
(2)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Proc Natl Acad Sci U S A 89(18): 8750-8753

Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure.

Abstract

The phylogenetic relationships of the Recent cnidarian classes remain one of the classic problems in invertebrate zoology. We survey the structure of the mitochondrial genome in representatives of the four extant cnidarian classes and in the phylum Ctenophora. We find that all anthozoan species tested possess mtDNA in the form of circular molecules, whereas all scyphozoan, cubozoan, and hydrozoan species tested display mtDNA in the form of linear molecules. Because ctenophore and all other known metazoan mtDNA is circular, the shared occurrence of linear mtDNA in three of the four cnidarian classes suggests a basal position for the Anthozoa within the phylum.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (887K), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Shure M, Wessler S, Fedoroff N. Molecular identification and isolation of the Waxy locus in maize. Cell. 1983 Nov;35(1):225–233. [PubMed] [Google Scholar]
  • Chomet PS, Wessler S, Dellaporta SL. Inactivation of the maize transposable element Activator (Ac) is associated with its DNA modification. EMBO J. 1987 Feb;6(2):295–302.[PMC free article] [PubMed] [Google Scholar]
  • Feinberg AP, Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. [PubMed] [Google Scholar]
  • Lansman RA, Shade RO, Shapira JF, Avise JC. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. III. Techniques and potential applications. J Mol Evol. 1981;17(4):214–226. [PubMed] [Google Scholar]
  • Gray MW. Origin and evolution of mitochondrial DNA. Annu Rev Cell Biol. 1989;5:25–50. [PubMed] [Google Scholar]
  • Garey JR, Wolstenholme DR. Platyhelminth mitochondrial DNA: evidence for early evolutionary origin of a tRNA(serAGN) that contains a dihydrouridine arm replacement loop, and of serine-specifying AGA and AGG codons. J Mol Evol. 1989 May;28(5):374–387. [PubMed] [Google Scholar]
  • Christen R, Ratto A, Baroin A, Perasso R, Grell KG, Adoutte A. An analysis of the origin of metazoans, using comparisons of partial sequences of the 28S RNA, reveals an early emergence of triploblasts. EMBO J. 1991 Mar;10(3):499–503.[PMC free article] [PubMed] [Google Scholar]
Department of Biology, Yale University, New Haven, CT 06511.
Department of Biology, Yale University, New Haven, CT 06511.
Abstract
The phylogenetic relationships of the Recent cnidarian classes remain one of the classic problems in invertebrate zoology. We survey the structure of the mitochondrial genome in representatives of the four extant cnidarian classes and in the phylum Ctenophora. We find that all anthozoan species tested possess mtDNA in the form of circular molecules, whereas all scyphozoan, cubozoan, and hydrozoan species tested display mtDNA in the form of linear molecules. Because ctenophore and all other known metazoan mtDNA is circular, the shared occurrence of linear mtDNA in three of the four cnidarian classes suggests a basal position for the Anthozoa within the phylum.
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.