Cardiac myocytes Ca2+ and Na+ regulation in normal and failing hearts.
Journal: 2006/August - Journal of Pharmacological Sciences
ISSN: 1347-8613
PUBMED: 16552170
Abstract:
Ca(2+) is a central player in the excitation-contraction coupling of cardiac myocytes, the process that enables the heart to contract and relax. Mishandling of Ca(2+) is a central cause of both contractile dysfunction and arrhythmias in pathophysiological conditions such as heart failure (HF). Upon electrical excitation, Ca(2+) enters the myocytes via voltage-gated Ca(2+) channels and induces further Ca(2+) release from the sarcoplasmic reticulum (SR). This raises the free intracellular Ca(2+) concentration ([Ca(2+)](i)), activating contraction. Relaxation is driven by [Ca(2+)](i) decline, mainly due to re-uptake into the SR via SR Ca(2+)-ATPase and extrusion via the sarcolemmal Na(+)/Ca(2+) exchange, NCX. Intracellular Na(+) concentration ([Na(+)](i)) is a main regulator of NCX, and thus [Na(+)](i) plays an important role in controlling the cytosolic and SR [Ca(2+)]. [Na(+)](i) may have an even more important role in HF because NCX is generally upregulated. There are several pathways for Na(+) entry into the cells, whereas the Na(+)/K(+) pump (NKA) is the main Na(+) extrusion pathway and therefore is essential in maintaining the transmembrane Na(+) gradient. Phospholemman is an important regulator of NKA function (decreasing [Na(+)](i) affinity unless it is phosphorylated). Here we discuss the interplay between Ca(2+) and Na(+) in myocytes from normal and failing hearts.
Relations:
Citations
(49)
Pathways
(1)
Diseases
(1)
Chemicals
(3)
Organisms
(1)
Processes
(1)
Anatomy
(2)
Affiliates
(2)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.