Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c.
Journal: 2004/June - Journal of Clinical Investigation
ISSN: 0021-9738
Abstract:
We explored the effects of bile acids on triglyceride (TG) homeostasis using a combination of molecular, cellular, and animal models. Cholic acid (CA) prevents hepatic TG accumulation, VLDL secretion, and elevated serum TG in mouse models of hypertriglyceridemia. At the molecular level, CA decreases hepatic expression of SREBP-1c and its lipogenic target genes. Through the use of mouse mutants for the short heterodimer partner (SHP) and liver X receptor (LXR) alpha and beta, we demonstrate the critical dependence of the reduction of SREBP-1c expression by either natural or synthetic farnesoid X receptor (FXR) agonists on both SHP and LXR alpha and LXR beta. These results suggest that strategies aimed at increasing FXR activity and the repressive effects of SHP should be explored to correct hypertriglyceridemia.
Relations:
Content
Citations
(290)
References
(58)
Drugs
(1)
Chemicals
(7)
Genes
(5)
Organisms
(7)
Processes
(3)
Anatomy
(2)
Similar articles
Articles by the same authors
Discussion board
J Clin Invest 113(10): 1408-1418

Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c

Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Illkirch, France. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA. Howard Hughes Medical Institute and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA. X-ceptor Therapeutics, San Diego, California, USA. Institut Clinique de la Souris, Illkirch, France.
Address correspondence to: Johan Auwerx, Institut de Génétique et Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, Parc d’Innovation, 67404 Illkirch, France. Phone: 33-388653425; Fax: 33-388653201; E-mail: rf.gbsarts-u.cmbgi@xrewua.
Address correspondence to: Johan Auwerx, Institut de Génétique et Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, Parc d’Innovation, 67404 Illkirch, France. Phone: 33-388653425; Fax: 33-388653201; E-mail: rf.gbsarts-u.cmbgi@xrewua.
Received 2004 Jan 9; Accepted 2004 Mar 23.

Abstract

We explored the effects of bile acids on triglyceride (TG) homeostasis using a combination of molecular, cellular, and animal models. Cholic acid (CA) prevents hepatic TG accumulation, VLDL secretion, and elevated serum TG in mouse models of hypertriglyceridemia. At the molecular level, CA decreases hepatic expression of SREBP-1c and its lipogenic target genes. Through the use of mouse mutants for the short heterodimer partner (SHP) and liver X receptor (LXR) α and β, we demonstrate the critical dependence of the reduction of SREBP-1c expression by either natural or synthetic farnesoid X receptor (FXR) agonists on both SHP and LXRα and LXRβ. These results suggest that strategies aimed at increasing FXR activity and the repressive effects of SHP should be explored to correct hypertriglyceridemia.

Abstract

Acknowledgments

Work in the laboratories of the authors is supported by grants of CNRS, INSERM, ULP, Hôpital Universitaire de Strasbourg, NIH (1P01 DK59820-01), EMBO, and the EU (QLG1CT-1999-00674 and QLRT-2001-00930). D.J. Mangelsdorf is an investigator and A. Moschetta is an associate of the Howard Hughes Medical Institute, which partly funded this work. The authors thank Pierre Chambon, Elisabeth Fayard, Osamu Ezaki, and Jurgen Lehmann for helpful discussions, and Marie-France Champy and the staff of the Institut Clinique de la Souris for technical assistance.

Acknowledgments

Footnotes

Nonstandard abbreviations used: acetyl-CoA carboxylase (ACC); acetyl-CoA synthetase (AceCS); angiopoietin-like protein 3 (ANGPTL3); carnitine palmitoyltransferase I (CPT-I); chenodeoxycholic acid (CDCA); cholesterol 7α-hydroxylase (CYP7A1); cholic acid (CA); farnesoid X receptor (FXR); fatty acid synthase (FAS); LDL receptor (LDL-R); liver receptor homolog-1 (LRH-1); liver receptor homolog-1 response element (LRH-1RE); liver X receptor (LXR); liver X receptor response element (LXRRE); long-chain acyl-CoA dehydrogenase (LCAD); malic enzyme (ME); medium-chain acyl-CoA dehydrogenase (MCAD); retinoid X receptor (RXR); short heterodimer partner (SHP); stearoyl-CoA desaturase-1 (SCD-1); triglyceride (TG).

Conflict of interest: The authors have declared that no conflict of interest exists.

Footnotes

References

  • 1. Cullen PEvidence that triglycerides are an independent coronary heart disease risk factor. Am. J. Cardiol.2000;86:943–949.[PubMed]
  • 2. Ginsberg HNHypertriglyceridemia: new insights and new approaches to pharmacologic therapy. Am. J. Cardiol.2001;87:1174–1180.[PubMed]
  • 3. Schoonjans K, Staels B, Auwerx JRole of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J. Lipid Res.1996;37:907–925.[PubMed]
  • 4. Horton JD, Goldstein JL, Brown MSSREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest.2002;109:1125–1131. doi:10.1172/JCI200215593.
  • 5. Brown MS, Goldstein JLThe SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell.1997;89:331–340.[PubMed]
  • 6. Shimano H, et al Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. J. Clin. Invest.1996;98:1575–1584.
  • 7. Shimano H, et al Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. J. Clin. Invest.1997;99:846–854.
  • 8. Foretz M, et al ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol. Cell. Biol.1999;19:3760–3768.
  • 9. Shimomura I, et al Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocin-induced diabetes. Proc. Natl. Acad. Sci. U. S. A.1999;96:13656–13661.
  • 10. Repa JJ, et al Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ Genes Dev.2000;14:2819–2830.
  • 11. Schultz JR, et al Role of LXRs in control of lipogenesis. Genes Dev.2000;14:2831–2838.
  • 12. Angelin B, Einarsson K, Hellstrom K, Leijd BEffects of cholestyramine and chenodeoxycholic acid on the metabolism of endogenous triglyceride in hyperlipoproteinemia. J. Lipid Res.1978;19:1017–1024.[PubMed]
  • 13. Beil U, Crouse JR, Einarsson K, Grundy SMEffects of interruption of the enterohepatic circulation of bile acids on the transport of very low density-lipoprotein triglycerides. Metabolism.1982;31:438–444.[PubMed]
  • 14. Crouse JRHypertriglyceridemia: a contraindication to the use of bile acid binding resins. Am. J. Med.1987;83:243–248.[PubMed]
  • 15. Bateson MC, Maclean D, Evans JR, Bouchier IAChenodeoxycholic acid therapy for hypertriglyceridaemia in men. Br. J. Clin. Pharmacol.1978;5:249–254.
  • 16. Carulli N, et al. Chenodeoxycholic acid and ursodeoxycholic acid effects in endogenous hypertriglyceridemias. A controlled double-blind trial. J. Clin. Pharmacol.1981;21:436–442.[PubMed]
  • 17. Goodwin B, et al A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell.2000;6:517–526.[PubMed]
  • 18. Lu TT, et al Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell.2000;6:507–515.[PubMed]
  • 19. Pineda Torra I, et al Bile acids induce the expression of the human peroxisome proliferator-activated receptor α gene via activation of the farnesoid X receptor. Mol. Endocrinol.2003;17:259–272.[PubMed]
  • 20. Kast HR, et al Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids. Mol. Endocrinol.2001;15:1720–1728.[PubMed]
  • 21. Beigneux A, Hofmann AF, Young SGHuman CYP7A1 deficiency: progress and enigmas. J. Clin. Invest.2002;110:29–31. doi:10.1172/JCI200216076.
  • 22. Pullinger CR, et al Human cholesterol 7α-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J. Clin. Invest.2002;110:109–117. doi:10.1172/JCI200215387.
  • 23. Wang L, et al Redundant pathways for negative feedback regulation of bile acid production. Dev. Cell.2002;2:721–731.[PubMed]
  • 24. Rocchi S, et al A unique PPARγ ligand with potent insulin-sensitizing yet weak adipogenic activity. Mol. Cell.2001;8:737–747.[PubMed]
  • 25. Picard F, et al SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell.2002;111:931–941.[PubMed]
  • 26. Boisfer E, et al Overexpression of human apolipoprotein A-II in mice induces hypertrigly-ceridemia due to defective very low density lipoprotein hydrolysis. J. Biol. Chem.1999;274:11564–11572.[PubMed]
  • 27. Nakamura MA diabetic strain of the mouse. Proc. Jpn. Acad.1962;38:348–352.[PubMed]
  • 28. Yen TT, Gill AM, Frigeri LG, Barsh GS, Wolff GLObesity, diabetes, and neoplasia in yellow A(vy) mice: ectopic expression of the agouti gene. FASEB J.1994;8:479–488.[PubMed]
  • 29. Nishimura MBreeding of mice strains for diabetes mellitus. Exp. Anim.1969;18:147–157.[PubMed]
  • 30. Ikemoto, et al Cholate inhibits high-fat diet-induced hyperglycemia and obesity with acyl-CoA synthetase mRNA decrease. Am. J. Physiol.1997;273:E37–E45.[PubMed]
  • 31. Sinal CJ, et al Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell.2000;102:731–744.[PubMed]
  • 32. Brendel C, Schoonjans K, Botrugno OA, Treuter E, Auwerx JThe small heterodimer partner interacts with the liver X receptor α and represses its transcriptional activity. Mol. Endocrinol.2002;16:2065–2076.[PubMed]
  • 33. Kerr TA, et al Loss of nuclear receptor SHP impairs but does not eliminate negative feedback regulation of bile acid synthesis. Dev. Cell.2002;2:713–720.
  • 34. Yoshikawa T, et al Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1c gene promoter. Mol. Cell. Biol.2001;21:2991–3000.
  • 35. Goodwin B, et al Differential regulation of rat and human CYP7A1 by the nuclear oxy-sterol receptor liver X receptor-α Mol. Endocrinol.2003;17:386–394.[PubMed]
  • 36. Luo Y, Liang CP, Tall ARThe orphan nuclear receptor LRH-1 potentiates the sterol-mediated induction of the human CETP gene by liver X receptor. J. Biol. Chem.2001;276:24767–24773.[PubMed]
  • 37. Iser JH, Sali AChenodeoxycholic acid: a review of its pharmacological properties and therapeutic use. Drugs.1981;21:90–119.[PubMed]
  • 38. Schwarz M, et al. Disruption of cholesterol 7α-hydroxylase gene in mice. II. Bile acid deficiency is overcome by induction of oxysterol 7α-hydroxylase. J. Biol. Chem.1996;271:18024–18031.
  • 39. Repa JJ, et al. Disruption of the sterol 27-hydroxylase gene in mice results in hepatomegaly and hypertriglyceridemia. Reversal by cholic acid feeding. J. Biol. Chem.2000;275:39685–39692.[PubMed]
  • 40. Duane WC, Hartich LA, Bartman AE, Ho SBDiminished gene expression of ileal apical sodium bile acid transporter explains impaired absorption of bile acid in patients with hypertriglyceridemia. J. Lipid Res.2000;41:1384–1389.[PubMed]
  • 41. del Pozo R, Barth CABile acids inhibit secretion of very low density lipoprotein by rat hepatocytes. Biol. Chem. Hoppe-Seyler.1987;368:887–893.[PubMed]
  • 42. Lin Y, et al Characterization of the inhibitory effects of bile acids on very-low-density lipoprotein secretion by rat hepatocytes in primary culture. Biochem. J.1996;316:531–538.
  • 43. Lin Y, et al Bile acids suppress the secretion of very-low-density lipoprotein by human hepatocytes in primary culture. Hepatology.1996;23:218–228.[PubMed]
  • 44. Srivastava RA, Srivastava N, Averna MDietary cholic acid lowers plasma levels of mouse and human apolipoprotein A-I primarily via a transcriptional mechanism. Eur. J. Biochem.2000;267:4272–4280.[PubMed]
  • 45. Urizar NL, Dowhan DH, Moore DDThe farnesoid X-activated receptor mediates bile acid activation of phospholipid transfer protein gene expression. J. Biol. Chem.2000;275:39313–39317.[PubMed]
  • 46. Claudel T, et al Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. J. Clin. Invest.2002;109:961–971. doi:10.1172/JCI200214505.
  • 47. Sinal CJ, Yoon M, Gonzalez FJAntagonism of the actions of peroxisome proliferator-activated receptor-α by bile acids. J. Biol. Chem.2001;276:47154–47162.[PubMed]
  • 48. Inaba T, et al Angiopoietin-like protein 3 (Angptl3) mediates hypertriglyceridemia induced by the liver X receptor. J. Biol. Chem.2003;278:21344–21351.[PubMed]
  • 49. Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PAPeroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev.2004;18:157–169.
  • 50. Shimomura I, et al Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol. Cell.2000;6:77–86.[PubMed]
  • 51. Elam MB, et al Increased hepatic VLDL secretion, lipogenesis, and SREBP-1 expression in the corpulent JCR:LA-cp rat. J. Lipid Res.2001;42:2039–2048.[PubMed]
  • 52. Shimomura I, Bashmakov Y, Horton JDIncreased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J. Biol. Chem.1999;274:30028–30032.[PubMed]
  • 53. Tobe K, et al Increased expression of the sterol regulatory element-binding protein-1 gene in insulin receptor substrate-2mouse liver. J. Biol. Chem.2001;276:38337–38340.[PubMed]
  • 54. Diraison F, Dusserre E, Vidal H, Sothier M, Beylot MIncreased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity. Am. J. Physiol. Endocrinol. Metab.2002;282:E46–E51.[PubMed]
  • 55. Liang G, et al Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J. Biol. Chem.2002;277:9520–9528.[PubMed]
  • 56. Matsuda M, et al SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation. Genes Dev.2001;15:1206–1216.
  • 57. Yang J, et al Decreased lipid synthesis in livers of mice with disrupted Site-1 protease gene. Proc. Natl. Acad. Sci. U. S. A.2001;98:13607–13612.
  • 58. Maloney PR, et al Identification of a chemical tool for the orphan nuclear receptor FXR. J. Med. Chem.2000;43:2971–2974.[PubMed]
  • 59. Nishigori H, et al Mutations in the small heterodimer partner gene are associated with mild obesity in Japanese subjects. Proc. Natl. Acad. Sci. U. S. A.2001;98:575–580.
  • 60. Schoenfield LJ, Lachin JM. Chenodiol (chenodeoxycholic acid) for dissolution of gallstones: the National Cooperative Gallstone Study. A controlled trial of efficacy and safety. Ann. Intern. Med.1981;95:257–282.[PubMed]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.