[Basis of Tumor Microenvironment Relevant to Immunotherapies for Brain Metastases of NSCLC].
Journal: 2019/August - Chinese Journal of Lung Cancer
ISSN: 1999-6187
Abstract:
Brain is the most frequent site for distant metastases of non-small cell lung cancer (NSCLC). Brain metastasis (BM) is also the leading cause of disabilities and death in advanced NSCLC. In recent years, the application and effectiveness of small-molecule tyrosine kinase inhibitors has formed the basis for the treatment of NSCLC brain metastases with driver gene mutations. With the development of programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) inhibitors and relevant combination therapies, immunotherapy has become an important choice for non-classic oncogene addicted NSCLC BM patients. Also, the roles of relevant biomarkers are increasingly standing out. By reason of the particular immunopathological features of NSCLC brain metastases and its microenvironment, the aim of this review is to summarize relevant research progresses and provide more references for combination strategies of different therapeutic methods as well as the development of novel immunotherapies. .
Relations:
Content
Citations
(1)
References
(67)
Diseases
(1)
Conditions
(1)
Drugs
(2)
Chemicals
(1)
Genes
(1)
Processes
(2)
Anatomy
(2)
Similar articles
Articles by the same authors
Discussion board
Zhongguo Fei Ai Za Zhi 22(8): 512-519

非小细胞肺癌脑转移免疫治疗的相关肿瘤微环境基础

200040 上海,复旦大学神经外科研究所,复旦大学附属华山医院神经外科, Immunology Laboratory, Neurosurgical Institute of Fudan University; Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China,
纪 春霞 (Chunxia JI): nc.ude.naduf@70001011231
纪春霞, Chunxia JI, E-mail: nc.ude.naduf@70001011231
纪 春霞 (Chunxia JI): nc.ude.naduf@70001011231
Received 2019 Apr 20; Revised 2019 Jun 15; Accepted 2019 Jul 5.

Abstract

脑是非小细胞肺癌(non-small cell lung cancer, NSCLC)最常见的远处转移部位,脑转移也是晚期肺癌致残致死的主要原因。近年来,小分子酪氨酸激酶抑制剂的应用和疗效奠定了驱动基因突变阳性的NSCLC脑转移的治疗基础。随着程序性死亡受体1(programmed cell death protein 1, PD-1)/程序性死亡受体配体1(programmed cell death protein ligand 1, PD-L1)抑制剂及相应联合疗法的不断发展,免疫治疗已成为驱动基因突变泛阴性的NSCLC脑转移患者的重要选择,相关生物标志物的价值也日益凸显。由于NSCLC脑转移肿瘤及其微环境的免疫病理特征具有一定的特殊性,本文旨在回顾相关研究进展,并为免疫治疗联合策略的探索与新型免疫疗法的开发提供参考。

Keywords: 肺肿瘤, 脑转移, 免疫治疗, 肿瘤微环境
Abstract

Abstract

Brain is the most frequent site for distant metastases of non-small cell lung cancer (NSCLC). Brain metastasis (BM) is also the leading cause of disabilities and death in advanced NSCLC. In recent years, the application and effectiveness of small-molecule tyrosine kinase inhibitors has formed the basis for the treatment of NSCLC brain metastases with driver gene mutations. With the development of programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) inhibitors and relevant combination therapies, immunotherapy has become an important choice for non-classic oncogene addicted NSCLC BM patients. Also, the roles of relevant biomarkers are increasingly standing out. By reason of the particular immunopathological features of NSCLC brain metastases and its microenvironment, the aim of this review is to summarize relevant research progresses and provide more references for combination strategies of different therapeutic methods as well as the development of novel immunotherapies.

Keywords: Lung neoplasms, Brain metastases, Immunotherapy, Tumor microenvironment
Abstract

Funding Statement

本文受国家自然科学基金面上项目(No.81572478)资助

This paper was supported by the grant from the National Natural Science Foundation of China (to Yu YAO) (No.81572478)

Funding Statement

References

  • 1. Langer CJ, Mehta MPCurrent management of brain metastases, with a focus on systemic options. J Clin Oncol. 2005;23(25):6207–6219. doi: 10.1200/JCO.2005.03.145.] [[PubMed][Google Scholar]
  • 2. Sorensen JB, Hansen HH, Hansen M, et al Brain metastases in adenocarcinoma of the lung: frequency, risk groups, and prognosis. J Clin Oncol. 1988;6(9):1474–1480. doi: 10.1200/JCO.1988.6.9.1474.] [[PubMed][Google Scholar]
  • 3. Frega S, Bonanno L, Guarneri V, et al Therapeutic perspectives for brain metastases in non-oncogene addicted non-small cell lung cancer (NSCLC): Towards a less dismal future? Crit Rev Oncol Hematol. 2018;128:19–29. doi: 10.1016/j.critrevonc.2018.05.013.] [[PubMed][Google Scholar]
  • 4. Reck M, Rodriguezabreu D, Robinson A, et al Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–1833. doi: 10.1056/NEJMoa1606774.] [[PubMed][Google Scholar]
  • 5. Borghaei H, Pazares L, Horn L, et al Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–1639. doi: 10.1056/NEJMoa1507643.] [[Google Scholar]
  • 6. Rittmeyer A, Barlesi F, Waterkamp D, et al Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–265. doi: 10.1016/S0140-6736(16)32517-X.] [[PubMed][Google Scholar]
  • 7. Goldberg SB, Gettinger SN, Mahajan A, et al Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2016;17(7):976–983. doi: 10.1016/S1470-2045(16)30053-5.] [[Google Scholar]
  • 8. Gadgeel SM, Lukas RV, Goldschmidt J, et al Atezolizumab in patients with advanced non-small cell lung cancer and history of asymptomatic, treated brain metastases: exploratory analyses of the phase Ⅲ OAK study. Lung Cancer. 2019;128:105–112. doi: 10.1016/j.lungcan.2018.12.017.] [[PubMed][Google Scholar]
  • 9. Tumeh PC, Harview CL, Yearley J, et al PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–571. doi: 10.1038/nature13954.] [[Google Scholar]
  • 10. Dong H, Strome SE, Salomao DR, et al Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800. doi: 10.1038/nm730.] [[PubMed][Google Scholar]
  • 11. Velcheti V, Schalper KA, Carvajal D, et al Programmed death ligand-1 expression in non-small cell lung cancer. Lab Invest. 2014;94(1):107–116. doi: 10.1038/labinvest.2013.130.] [[Google Scholar]
  • 12. Sacher AG, Gandhi LBiomarkers for the clinical use of PD-1/PD-L1 inhibitors in non-small-cell lung cancer: a review. JAMA Oncol. 2016;2(9):1217. doi: 10.1001/jamaoncol.2016.0639.] [[PubMed][Google Scholar]
  • 13. Shien K, Papadimitrakopoulou VA, Wistuba ⅡPredictive biomarkers of response to PD-1/PD-L1 immune checkpoint inhibitors in non-small cell lung cancer. Lung Cancer. 2016;99:79–87. doi: 10.1016/j.lungcan.2016.06.016.] [[Google Scholar]
  • 14. Shen X, Zhao BEfficacy of PD-1 or PD-L1 inhibitors and PD-L1 expression status in cancer: meta-analysis. BMJ. 2018;362:k3529. doi: 10.1136/bmj.k3529.] [[Google Scholar]
  • 15. Negrao MV, Lam VK, Reuben A, et al PD-L1 expression, tumor mutational burden, and cancer gene mutations are stronger predictors of benefit from immune checkpoint blockade than HLA class I genotype in non-small cell lung cancer. J Thorac Oncol. 2019;14(6):1021–1031. doi: 10.1016/j.jtho.2019.02.008.] [[PubMed][Google Scholar]
  • 16. Peters S, Creelan B, Hellmann MD, et al Abstract CT082: Impact of tumor mutation burden on the efficacy of first-line nivolumab in stage iv or recurrent non-small cell lung cancer: An exploratory analysis of CheckMate 026. Cancer Res. 2017;77(13 Supplement):CT082. doi: 10.1158/1538-7445.AM2017-CT082.[PubMed][Google Scholar]
  • 17. Mansfield AS, Aubry MC, Moser JC, et al Temporal and spatial discordance of programmed cell death-ligand 1 expression and lymphocyte tumor infiltration between paired primary lesions and brain metastases in lung cancer. Ann Oncol. 2016;27(10):1953–1958. doi: 10.1093/annonc/mdw289.] [[Google Scholar]
  • 18. Teng MWL, Ngiow SF, Ribas A, et al Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res. 2015;75(11):2139–2145. doi: 10.1158/0008-5472.CAN-15-0255.] [[Google Scholar]
  • 19. Mansfield AS, Ren H, Sutor S, et al Contraction of T cell richness in lung cancer brain metastases. Sci Rep. 2018;8(1):2171. doi: 10.1038/s41598-018-20622-8.] [[Google Scholar]
  • 20. Zhou J, Gong Z, Jia Q, et al Programmed death ligand 1 expression and CD8 tumor-infiltrating lymphocyte density differences between paired primary and brain metastatic lesions in non-small cell lung cancer. Biochem Biophys Res Commun. 2018;498(4):751–757. doi: 10.1016/j.bbrc.2018.03.053.] [[PubMed][Google Scholar]
  • 21. Hu C, Chang EL, Rd HS, et al Non-small cell lung cancer presenting with synchronous solitary brain metastasis. Cancer. 2006;106(9):1998–2004. doi: 10.1002/cncr.21818.] [[PubMed][Google Scholar]
  • 22. Kim R, Keam B, Kim S, et al Differences in tumor microenvironments between primary lung tumors and brain metastases in lung cancer patients: therapeutic implications for immune checkpoint inhibitors. BMC Cancer. 2019;19(1):19. doi: 10.1186/s12885-018-5214-8.] [[Google Scholar]
  • 23. Xiao Y, Freeman GJThe microsatellite instable subset of colorectal cancer is a particularly good candidate for checkpoint blockade immunotherapy. Cancer Discov. 2015;5(1):16–18. doi: 10.1158/2159-8290.CD-14-1397.] [[Google Scholar]
  • 24. Warth A, Sandrina K, Penzel R, et al Microsatellite instability in pulmonary adenocarcinomas: a comprehensive study of 480 cases. Virchows Arch. 2016;468(3):313–319. doi: 10.1007/s00428-015-1892-7.] [[PubMed][Google Scholar]
  • 25. Jin Y, Dong H, Xia L, et al The diversity of gut microbiome is associated with favorable responses to anti-PD-1 immunotherapy in Chinese non-small cell lung cancer patients. J Thorac Oncol. 2019;pii: S1556-0864(19):30286–2. doi: 10.1016/j.jtho.2019.04.007.] [[PubMed][Google Scholar]
  • 26. Rothhammer V, Borucki DM, Tjon EC, et al Microglial control of astrocytes in response to microbial metabolites. Nature. 2018;557(7707):724–728. doi: 10.1038/s41586-018-0119-x.] [[Google Scholar]
  • 27. Ferrara R, Mezquita L, Texier M, et al Hyperprogressive disease in patients with advanced non-small cell lung cancer treated with PD-1/PD-L1 inhibitors or with single-agent chemotherapy. JAMA Oncol. 2018;4(11):1543–1552. doi: 10.1001/jamaoncol.2018.3676.] [[Google Scholar]
  • 28. Kato S, Goodman AM, Walavalkar V, et al Hyper-progressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin Cancer Res. 2017;23(15):4242–4250. doi: 10.1158/1078-0432.CCR-16-3133.] [[Google Scholar]
  • 29. Jiang W, Chan CK, Weissman IL, et al Immune priming of the tumor microenvironment by radiation. Trends Cancer. 2016;2(11):638–645. doi: 10.1016/j.trecan.2016.09.007.] [[PubMed][Google Scholar]
  • 30. Duan C, Yang RM, Yuan LY, et al Late effects of radiation prime the brain microenvironment for accelerated tumor growth. Int J Radiat Oncol Biol Phys. 2018;pii: S0360-3016(18):33639–3. doi: 10.1016/j.ijrobp.2018.08.033.] [[Google Scholar]
  • 31. Brooks ED, Chang JYTime to abandon single-site irradiation for inducing abscopal effects. Nat Rev Clin Oncol. 2019;16(2):123–135. doi: 10.1038/s41571-018-0119-7.] [[PubMed][Google Scholar]
  • 32. Takamori S, Toyokawa G, Okamoto I, et al Discrepancy in programmed cell death-ligand 1 between primary and metastatic non-small cell lung cancer. Anticancer Res. 2017;37:4223–4228. doi: 10.21873/anticanres.11813.] [[PubMed][Google Scholar]
  • 33. Emens LA, Middleton GThe interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol Res. 2015;3(5):436–443. doi: 10.1158/2326-6066.CIR-15-0064.] [[Google Scholar]
  • 34. Teglasi V, Reiniger L, Fabian K, et al Evaluating the significance of density, localization, and PD-1/PD-L1 immunopositivity of mononuclear cells in the clinical course of lung adenocarcinoma patients with brain metastasis. Neuro Oncol. 2017;19(8):1058–1067. doi: 10.1093/neuonc/now309.] [[Google Scholar]
  • 35. Afzal MZ, Dragnev KH, Shirai K, et al A tertiary care cancer center experience with carboplatin and pemetrexed in combination with pembrolizumab in comparison with carboplatin and pemetrexed alone in non-squamous non-small cell lung cancer. J Thorac Dis. 2018;10(6):3575–3584. doi: 10.21037/jtd.2018.06.08.] [[Google Scholar]
  • 36. Jubb AM, Cesario A, Ferguson M, et al Vascular phenotypes in primary non-small cell lung carcinomas and matched brain metastases. Br J Cancer. 2011;104(12):1877–1881. doi: 10.1038/bjc.2011.147.] [[Google Scholar]
  • 37. Manegold C, Dingemans Anne-Marie C, Gray JE, et al The potential of combined immunotherapy and antiangiogenesis for the synergistic treatment of advanced NSCLC. J Thorac Oncol. 2017;12:194–207. doi: 10.1016/j.jtho.2016.10.003.] [[PubMed][Google Scholar]
  • 38. Feng P, Chen K, Huang Y, et al Bevacizumab reduces S100A9-positive MDSCs linked to intracranial control in patients with EGFR-mutant lung adenocarcinoma. J Thorac Oncol. 2018;13(7):958–967. doi: 10.1016/j.jtho.2018.03.032.] [[PubMed][Google Scholar]
  • 39. Pircher A, Wolf D, Heidenreich A, et al Synergies of targeting tumor angiogenesis and immune checkpoints in non-small cell lung cancer and renal cell cancer: from basic concepts to clinical reality. Int J Mol Sci. 2017;18(11):2291. doi: 10.3390/ijms18112291.] [[Google Scholar]
  • 40. Arbour Kathryn C, Mezquita L, Long N, et al Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer. J Clin Oncol. 2018;36:2872–2878. doi: 10.1200/JCO.2018.79.0006.] [[PubMed][Google Scholar]
  • 41. Hammers HJ, Plimack ER, Infante JR, et al Safety and efficacy of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma: the CheckMate 016 study. J Clin Oncol. 2017;35:3851–3858. doi: 10.1200/JCO.2016.72.1985.] [[PubMed][Google Scholar]
  • 42. Volaric A, Gentzler R, Hall R, et al Indoleamine-2, 3-dioxygenase in non-small cell lung cancer: a targetable mechanism of immune resistance frequently coexpressed with PD-L1. Am J Surg Pathol. 2018;42(9):1216–1223. doi: 10.1097/PAS.0000000000001099.] [[PubMed][Google Scholar]
  • 43. Ge M, Zhuang Y, Zhou X, et al High probability and frequency of EGFR mutations in non-small cell lung cancer with brain metastases. J Neurooncol. 2017;135(2):413–418. doi: 10.1007/s11060-017-2590-x.] [[PubMed][Google Scholar]
  • 44. Dong ZY, Zhang JT, Liu SY, et al EGFR mutation correlates with uninflamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small cell lung cancer. Oncoimmunology. 2017;6(11):e1356145. doi: 10.1080/2162402X.2017.1356145.] [[Google Scholar]
  • 45. Ahn MJ, Sun JM, Lee SH, et al EGFR TKI combination with immunotherapy in non-small cell lung cancer. Expert Opin Drug Saf. 2017;16:465–469. doi: 10.1080/14740338.2017.1300656.] [[PubMed][Google Scholar]
  • 46. Engelhardt B, Vajkoczy P, Weller ROThe movers and shapers in immune privilege of the CNS. Nat Immunol. 2017;18(2):123–131. doi: 10.1038/ni.3666.] [[PubMed][Google Scholar]
  • 47. Chen DS, Mellman IElements of cancer immunity and the cancer-immune set point. Nature. 2017;541(7637):321–330. doi: 10.1038/nature21349.] [[PubMed][Google Scholar]
  • 48. Chongsathidkiet P, Jackson C, Koyama S, et al Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med. 2019;25(3):529. doi: 10.1038/s41591-019-0355-0.] [[Google Scholar]
  • 49. Zhou X, Zhao S, He Y, et al Precise spatio-temporal interruption of regulatory T cell-mediated CD8 T cell suppression leads to tumor immunity. Cancer Res. 2019;79(3):585–597. doi: 10.1158/0008-5472.CAN-18-1250.] [[PubMed][Google Scholar]
  • 50. Sica GL, Choi IH, Zhu G, et al B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity. 2003;18(6):849–861. doi: 10.1016/S1074-7613(03)00152-3.] [[PubMed][Google Scholar]
  • 51. Yao Y, Wang X, Jin K, et al B7-H4 is preferentially expressed in non-dividing brain tumor cells and in a subset of brain tumor stem-like cells. J Neurooncol. 2008;89(2):121–129. doi: 10.1007/s11060-008-9601-x.] [[PubMed][Google Scholar]
  • 52. Sun Y, Wang Y, Zhao J, et al B7-H3 and B7-H4 expression in non-small-cell lung cancer. Lung Cancer. 2006;53(2):143–151. doi: 10.1016/j.lungcan.2006.05.012.] [[PubMed][Google Scholar]
  • 53. Li ZY, Zhang XH, Chen Y, et al Clinical significance of B7-H4 expression in matched non-small cell lung cancer brain metastases and primary tumors. Onco Targets Ther. 2013;6:869–875. doi: 10.2147/OTT.S48085.] [[Google Scholar]
  • 54. Langley RR, Fidler IJThe biology of brain metastasis. Clin Chem. 2013;59(1):180–189. doi: 10.1373/clinchem.2012.193342.] [[PubMed][Google Scholar]
  • 55. Allavena P, Sica A, Garlanda C, et al The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev. 2010;222(1):155–161. doi: 10.1111/j.1600-065X.2008.00607.x.] [[PubMed][Google Scholar]
  • 56. Wei J, Gabrusiewicz K, Heimberger AThe controversial role of microglia in malignant gliomas. Clin Dev Immuno. 2013;2013(4):285246. doi: 10.1155/2013/285246.] [[Google Scholar]
  • 57. Andreou KE, Soto MS, Allen D, et al Anti-inflammatory microglia/macrophages as a potential therapeutic target in brain metastasis. Front Oncol. 2017;7:251. doi: 10.3389/fonc.2017.00251.] [[Google Scholar]
  • 58. He BP, Wang JJ, Zhang X, et al Differential reactions of microglia to brain metastasis of lung cancer. Mol Med. 2006;12(7-8):161–170. doi: 10.2119/2006-00033.He.] [[Google Scholar]
  • 59. Loganadane G, Dhermain F, Louvel G, et al Brain radiation necrosis: current management with a focus on non-small cell lung cancer patients. Front Oncol. 2018;8:336. doi: 10.3389/fonc.2018.00336.] [[Google Scholar]
  • 60. Zhang L, Zhang SY, Yao J, et al Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527:100–104. doi: 10.1038/nature15376.] [[Google Scholar]
  • 61. He GP, Zhang B, Zhang BW, et al Th17 cells and IL-17 are increased in patients with brain metastases from the primary lung cancer. Zhongguo Fei Ai Za Zhi. 2013;16(9):476–481. doi: 10.3779/j.issn.1009-3419.2013.09.07.] [何 改平, 张 彬, 张 宝文, et al. 肺癌脑转移患者Th17细胞和IL-17水平变化的研究 中国肺癌杂志 2013;16(9):476–481. doi: 10.3779/j.issn.1009-3419.2013.09.07.] [[Google Scholar]
  • 62. Cavallaro SCXCR4/CXCL12 in non-small-cell lung cancer metastasis to the brain. Int J Mol Sci. 2013;14:1713–1727. doi: 10.3390/ijms14011713.] [[Google Scholar]
  • 63. Rosenberg SA, Spiess P, Lafreniere RA new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. 1986;233(4770):1318–1321. doi: 10.1126/science.3489291.] [[PubMed][Google Scholar]
  • 64. van Buuren MM, Calis JJ, Schumacher TNHigh sensitivity of cancer exome-based CD8 T cell neo-antigen identification. Oncoimmunology. 2014;3:e28836. doi: 10.4161/onci.28836.] [[Google Scholar]
  • 65. Oliveres H, Caglevic C, Passiglia F, et al Vaccine and immune cell therapy in non-small cell lung cancer. J Thorac Dis. 2018;10:S1602–S1614. doi: 10.21037/jtd.2018.05.134.] [[Google Scholar]
  • 66. Natarajan A, Mayer AT, Xu L, et al Novel radiotracer for immunoPET imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes. Bioconjug Chem. 2015;26(10):2062–2069. doi: 10.1021/acs.bioconjchem.] [[PubMed][Google Scholar]
  • 67. Ponomarev VAdvancing immune and cell-based therapies through imaging. Mol Imaging Biol. 2017;19(3):379–384. doi: 10.1007/s11307-017-1069-7.] [[Google Scholar]
  • 68. Jiang BY, Li YS, Guo WB, et al Detection of driver and resistance mutations in leptomeningeal metastases of NSCLC by next-generation sequencing of cerebrospinal fluid circulating tumor cells. Clin Cancer Res. 2017;23(18):5480. doi: 10.1158/1078-0432.CCR-17-0047.] [[PubMed][Google Scholar]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.