Andrographolide induces apoptosis in B16F-10 melanoma cells by inhibiting NF-κB-mediated bcl-2 activation and modulating p53-induced caspase-3 gene expression.
Journal: 2012/April - Immunopharmacology and Immunotoxicology
ISSN: 1532-2513
Abstract:
Cancer is a disorder characterized by uncontrolled proliferation and reduced apoptosis. Inducing apoptosis is an efficient method of treating cancers. In this study, we investigated the effect of andrographolide on the induction of apoptosis as well as its regulatory effect on the activation of transcription factors in B16F-10 melanoma cells. Treatment of B16F-10 cells with nontoxic concentration of andrographolide showed the presence of apoptotic bodies and induced DNA fragmentation in a dose-dependent manner. Cell cycle analysis and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays also confirmed the observation. The proapoptotic genes p53, Bax, caspase-9, and caspase-3 were found upregulated in andrographolide-treated cells, whereas the antiapoptotic gene bcl-2 was downregulated. This study also reveals that andrographolide treatment could alter the production and expression of proinflammatory cytokines and could inhibit the activation and nuclear translocation of p65, p50, and c-Rel subunits of nuclear factor-κB (NF-κB), and other transcription factors such as c-fos, activated transcription factor-2, and cyclic adenosine monophosphate response element-binding protein in B16F-10 melanoma cells. These results suggest that andrographolide induces apoptosis via inhibiting NF-κB-induced bcl-2-mediated survival signaling and modulating p53-induced caspase-3-mediated proapoptotic signaling.
Relations:
Citations
(7)
Diseases
(1)
Chemicals
(8)
Genes
(3)
Organisms
(1)
Processes
(3)
Anatomy
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.