Aberrant TGF-β activation in bone tendon insertion induces enthesopathy-like disease.
Journal: 2018/November - Journal of Clinical Investigation
ISSN: 1558-8238
Abstract:
Enthesopathy is a disorder of bone, tendon, or ligament insertion. It represents one-fourth of all tendon-ligament diseases and is one of the most difficult tendon-ligament disorders to treat. Despite its high prevalence, the exact pathogenesis of this condition remains unknown. Here, we show that TGF-β was activated in both a semi-Achilles tendon transection (SMTS) mouse model and in a dorsiflexion immobilization (DI) mouse model of enthesopathy. High concentrations of active TGF-β recruited mesenchymal stromal stem cells (MSCs) and led to excessive vessel formation, bone deterioration, and fibrocartilage calcification. Transgenic expression of active TGF-β1 in bone also induced enthesopathy with a phenotype similar to that observed in SMTS and DI mice. Systemic inhibition of TGF-β activity by injection of 1D11, a TGF-β-neutralizing antibody, but not a vehicle antibody, attenuated the excessive vessel formation and restored uncoupled bone remodeling in SMTS mice. 1D11-treated SMTS fibrocartilage had increased proteoglycan and decreased collagen X and matrix metalloproteinase 13 expression relative to control antibody treatment. Notably, inducible knockout of the TGF-β type II receptor in mouse MSCs preserved the bone microarchitecture and fibrocartilage composition after SMTS relative to the WT littermate controls. Thus, elevated levels of active TGF-β in the enthesis bone marrow induce the initial pathological changes of enthesopathy, indicating that TGF-β inhibition could be a potential therapeutic strategy.
Relations:
Content
Citations
(5)
Genes
(2)
Similar articles
Articles by the same authors
Discussion board
J Clin Invest 128(2): 846-860

Aberrant TGF-<strong>β</strong> activation in bone tendon insertion induces enthesopathy-like disease

+4 authors
Supplemental data:
Click here to view.(5.9M, pdf)
Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China.
Department of Spinal Surgery/Orthopedic Research Institute, First Affiliated Hospital, Sun Yat-sen University, Guandong, China.
Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, Shanghai, China.
Corresponding author.
Xiao Wang: moc.liamg@gnaw.x.nuahs; Liang Xie: moc.qq@433711243; Janet Crane: ude.imhj@2enarcj; Gehua Zhen: ude.imhj@1nehzg; Fengfeng Li: moc.361@elamgnef; Ping Yang: moc.361@7215gnipgnay; Manman Gao: nc.ude.usys.2liam@mnamoag; Ruoxian Deng: ude.imhj@3gnedr; Yiguo Wang: ude.imhj@953gnawy; Xiaohua Jia: nc.ca.ai@aij.auhoaix; Cunyi Fan: nc.ude.utjs@nafyc; Mei Wan: ude.imhj@4nawm; Xu Cao: ude.imhj@11oacx
Address correspondence to: Xu Cao, 720 Rutland Avenue, Ross 231, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA. Phone: 410.502.6440; Email: ude.imhj@11oacx.
Xiao Wang: moc.liamg@gnaw.x.nuahs; Liang Xie: moc.qq@433711243; Janet Crane: ude.imhj@2enarcj; Gehua Zhen: ude.imhj@1nehzg; Fengfeng Li: moc.361@elamgnef; Ping Yang: moc.361@7215gnipgnay; Manman Gao: nc.ude.usys.2liam@mnamoag; Ruoxian Deng: ude.imhj@3gnedr; Yiguo Wang: ude.imhj@953gnawy; Xiaohua Jia: nc.ca.ai@aij.auhoaix; Cunyi Fan: nc.ude.utjs@nafyc; Mei Wan: ude.imhj@4nawm; Xu Cao: ude.imhj@11oacxAddress correspondence to: Xu Cao, 720 Rutland Avenue, Ross 231, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA. Phone: 410.502.6440; Email: ude.imhj@11oacx.
Received 2017 Jul 10; Accepted 2017 Dec 7.

Abstract

Enthesopathy is a disorder of bone, tendon, or ligament insertion. It represents one-fourth of all tendon-ligament diseases and is one of the most difficult tendon-ligament disorders to treat. Despite its high prevalence, the exact pathogenesis of this condition remains unknown. Here, we show that TGF-β was activated in both a semi-Achilles tendon transection (SMTS) mouse model and in a dorsiflexion immobilization (DI) mouse model of enthesopathy. High concentrations of active TGF-β recruited mesenchymal stromal stem cells (MSCs) and led to excessive vessel formation, bone deterioration, and fibrocartilage calcification. Transgenic expression of active TGF-β1 in bone also induced enthesopathy with a phenotype similar to that observed in SMTS and DI mice. Systemic inhibition of TGF-β activity by injection of 1D11, a TGF-β–neutralizing antibody, but not a vehicle antibody, attenuated the excessive vessel formation and restored uncoupled bone remodeling in SMTS mice. 1D11-treated SMTS fibrocartilage had increased proteoglycan and decreased collagen X and matrix metalloproteinase 13 expression relative to control antibody treatment. Notably, inducible knockout of the TGF-β type II receptor in mouse MSCs preserved the bone microarchitecture and fibrocartilage composition after SMTS relative to the WT littermate controls. Thus, elevated levels of active TGF-β in the enthesis bone marrow induce the initial pathological changes of enthesopathy, indicating that TGF-β inhibition could be a potential therapeutic strategy.

Keywords: Bone Biology
Keywords: Bone disease
Abstract

Acknowledgments

This work was supported in part by NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases grants AR071432 and {"type":"entrez-nucleotide","attrs":{"text":"AR063943","term_id":"5993251","term_text":"AR063943"}}AR063943 (to XC).

Acknowledgments

Version Changes

Version 1. 01/22/2018

Electronic publication

Version 2. 02/01/2018

Print issue publication

Version Changes

Footnotes

Conflict of interest: The authors have declared that no conflict of interest exists.

Reference information: J Clin Invest. 2018;128(2):846–860.https://doi.org/10.1172/JCI96186.

Footnotes

References

  • 1. Genin GM, et al Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys J. 2009;97(4):976–985. doi: 10.1016/j.bpj.2009.05.043.] [[Google Scholar]
  • 2. Benjamin M, Toumi H, Ralphs JR, Bydder G, Best TM, Milz SWhere tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load. J Anat. 2006;208(4):471–490. doi: 10.1111/j.1469-7580.2006.00540.x.] [[Google Scholar]
  • 3. Ristolainen L, Kettunen JA, Kujala UM, Heinonen ASport injuries as the main cause of sport career termination among Finnish top-level athletes. Eur J Sport Sci. 2012;12(3):274–282. doi: 10.1080/17461391.2011.566365.[PubMed][Google Scholar]
  • 4. Järvinen TA, Kannus P, Maffulli N, Khan KMAchilles tendon disorders: etiology and epidemiology. Foot Ankle Clin. 2005;10(2):255–266. doi: 10.1016/j.fcl.2005.01.013.] [[PubMed][Google Scholar]
  • 5. Józsa L, Kannus PHistopathological findings in spontaneous tendon ruptures. Scand J Med Sci Sports. 1997;7(2):113–118.[PubMed][Google Scholar]
  • 6. Lee KSMusculoskeletal sonography of the tendon. J Ultrasound Med. 2012;31(12):1879–1884. doi: 10.7863/jum.2012.31.12.1879.] [[PubMed][Google Scholar]
  • 7. Benjamin M, McGonagle DThe anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites. J Anat. 2001;199(Pt 5):503–526.[Google Scholar]
  • 8. Hibino N, Hamada Y, Sairyo K, Yukata K, Sano T, Yasui N. Callus formation during healing of the repaired tendon-bone junction. A rat experimental model. J Bone Joint Surg Br. 2007;89(11):1539–1544.[PubMed]
  • 9. Raspanti M, Strocchi R, De Pasquale V, Martini D, Montanari C, Ruggeri AStructure and ultrastructure of the bone/ligament junction. Ital J Anat Embryol. 1996;101(2):97–105.[PubMed][Google Scholar]
  • 10. François RJLigament insertions into the human lumbar vertebral body. Acta Anat (Basel) 1975;91(3):467–480. doi: 10.1159/000144407.] [[PubMed][Google Scholar]
  • 11. McGonagle D, et al Histological assessment of the early enthesitis lesion in spondyloarthropathy. Ann Rheum Dis. 2002;61(6):534–537. doi: 10.1136/ard.61.6.534.] [[Google Scholar]
  • 12. Mariotti V, Facchini F, Belcastro MGEnthesopathies--proposal of a standardized scoring method and applications. Coll Antropol. 2004;28(1):145–159.[PubMed][Google Scholar]
  • 13. Havelková P, Villotte SEnthesopathies: test of reproducibility of the new scoring system based on current medical data. Slovenská antropológia. 2007;10(1):51–57.[PubMed][Google Scholar]
  • 14. Kumagai J, Sarkar K, Uhthoff HK, Okawara Y, Ooshima AImmunohistochemical distribution of type I, II and III collagens in the rabbit supraspinatus tendon insertion. J Anat. 1994;185(Pt 2):279–284.[Google Scholar]
  • 15. Sagarriga Visconti C, Kavalkovich K, Wu J, Niyibizi CBiochemical analysis of collagens at the ligament-bone interface reveals presence of cartilage-specific collagens. Arch Biochem Biophys. 1996;328(1):135–142. doi: 10.1006/abbi.1996.0153.] [[PubMed][Google Scholar]
  • 16. Fukuta S, Oyama M, Kavalkovich K, Fu FH, Niyibizi CIdentification of types II, IX and X collagens at the insertion site of the bovine achilles tendon. Matrix Biol. 1998;17(1):65–73. doi: 10.1016/S0945-053X(98)90125-1.] [[PubMed][Google Scholar]
  • 17. Waggett AD, Ralphs JR, Kwan AP, Woodnutt D, Benjamin MCharacterization of collagens and proteoglycans at the insertion of the human Achilles tendon. Matrix Biol. 1998;16(8):457–470. doi: 10.1016/S0945-053X(98)90017-8.] [[PubMed][Google Scholar]
  • 18. Thomopoulos S, Williams GR, Gimbel JA, Favata M, Soslowsky LJVariation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J Orthop Res. 2003;21(3):413–419. doi: 10.1016/S0736-0266(03)0057-3.] [[PubMed][Google Scholar]
  • 19. Zhang YG, Sun ZM, Liu JT, Wang SJ, Ren FL, Guo XFeatures of intervertebral disc degeneration in rat’s aging process. J Zhejiang Univ Sci B. 2009;10(7):522–527. doi: 10.1631/jzus.B0820295.] [[Google Scholar]
  • 20. Roberts S, Caterson B, Menage J, Evans EH, Jaffray DC, Eisenstein SMMatrix metalloproteinases and aggrecanase: their role in disorders of the human intervertebral disc. Spine. 2000;25(23):3005–3013. doi: 10.1097/00007632-200012010-00007.] [[PubMed][Google Scholar]
  • 21. Le Maitre CL, Freemont AJ, Hoyland JALocalization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc. J Pathol. 2004;204(1):47–54. doi: 10.1002/path.1608.] [[PubMed][Google Scholar]
  • 22. Bastow ER, Byers S, Golub SB, Clarkin CE, Pitsillides AA, Fosang AJHyaluronan synthesis and degradation in cartilage and bone. Cell Mol Life Sci. 2008;65(3):395–413. doi: 10.1007/s00018-007-7360-z.] [[PubMed][Google Scholar]
  • 23. Milz S, et al Molecular composition and pathology of entheses on the medial and lateral epicondyles of the humerus: a structural basis for epicondylitis. Ann Rheum Dis. 2004;63(9):1015–1021. doi: 10.1136/ard.2003.016378.] [[Google Scholar]
  • 24. Resnick D, Feingold ML, Curd J, Niwayama G, Goergen TG. Calcaneal abnormalities in articular disorders. Rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis, and Reiter syndrome. Radiology. 1977;125(2):355–366. doi: 10.1148/125.2.355.] [[PubMed]
  • 25. Bassiouni MIncidence of calcaneal spurs in osteo-arthrosis and rheumatoid arthritis, and in control patients. Ann Rheum Dis. 1965;24(5):490–493. doi: 10.1136/ard.24.5.490.] [[Google Scholar]
  • 26. Rubin G, Witten MPlantar calcaneal spurs. Am J Orthop. 1963;5:38–41.[PubMed][Google Scholar]
  • 27. Zhang F, et al Transforming growth factor-beta promotes recruitment of bone marrow cells and bone marrow-derived mesenchymal stem cells through stimulation of MCP-1 production in vascular smooth muscle cells. J Biol Chem. 2009;284(26):17564–17574. doi: 10.1074/jbc.M109.013987.] [[Google Scholar]
  • 28. Wan M, et al Injury-activated transforming growth factor β controls mobilization of mesenchymal stem cells for tissue remodeling. Stem Cells. 2012;30(11):2498–2511. doi: 10.1002/stem.1208.] [[Google Scholar]
  • 29. Crane JL, Cao XBone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling. J Clin Invest. 2014;124(2):466–472. doi: 10.1172/JCI70050.] [[Google Scholar]
  • 30. Zhen G, Cao XTargeting TGFβ signaling in subchondral bone and articular cartilage homeostasis. Trends Pharmacol Sci. 2014;35(5):227–236. doi: 10.1016/j.tips.2014.03.005.] [[Google Scholar]
  • 31. Tang Y, et al TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15(7):757–765. doi: 10.1038/nm.1979.] [[Google Scholar]
  • 32. Gao P, et al Functional effects of TGF-β1 on mesenchymal stem cell mobilization in cockroach allergen-induced asthma. J Immunol. 2014;192(10):4560–4570. doi: 10.4049/jimmunol.1303461.] [[Google Scholar]
  • 33. Yang X, Chen L, Xu X, Li C, Huang C, Deng CXTGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol. 2001;153(1):35–46. doi: 10.1083/jcb.153.1.35.] [[Google Scholar]
  • 34. Shinojima N, et al TGF-β mediates homing of bone marrow-derived human mesenchymal stem cells to glioma stem cells. Cancer Res. 2013;73(7):2333–2344. doi: 10.1158/0008-5472.CAN-12-3086.] [[Google Scholar]
  • 35. Grafe I, et al Excessive transforming growth factor-β signaling is a common mechanism in osteogenesis imperfecta. Nat Med. 2014;20(6):670–675. doi: 10.1038/nm.3544.] [[Google Scholar]
  • 36. Zhen G, et al Inhibition of TGF-β signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med. 2013;19(6):704–712. doi: 10.1038/nm.3143.] [[Google Scholar]
  • 37. Braun J, et al Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum. 1995;38(4):499–505. doi: 10.1002/art.1780380407.] [[PubMed][Google Scholar]
  • 38. Claudepierre P, et al A relationship between TGF-beta 1 or IL-6 plasma levels and clinical features of spondyloarthropathies. Br J Rheumatol. 1997;36(3):400–401. doi: 10.1093/rheumatology/36.3.400.] [[PubMed][Google Scholar]
  • 39. Maffulli NRupture of the Achilles tendon. J Bone Joint Surg Am. 1999;81(7):1019–1036. doi: 10.2106/00004623-199907000-00017.] [[PubMed][Google Scholar]
  • 40. Hahn M, Vogel M, Pompesius-Kempa M, Delling GTrabecular bone pattern factor--a new parameter for simple quantification of bone microarchitecture. Bone. 1992;13(4):327–330. doi: 10.1016/8756-3282(92)90078-B.] [[PubMed][Google Scholar]
  • 41. Sarahrudi K, et al Elevated transforming growth factor-beta 1 (TGF-β1) levels in human fracture healing. Injury. 2011;42(8):833–837. doi: 10.1016/j.injury.2011.03.055.] [[Google Scholar]
  • 42. Quinlan JF, Watson RW, Kelly G, Kelly PM, O’Byrne JM, Fitzpatrick JMTransforming growth factor-beta (TGF-beta) in acute injuries of the spinal cord. J Bone Joint Surg Br. 2006;88(3):406–410.[PubMed][Google Scholar]
  • 43. Morganti-Kossmann MC, et al TGF-beta is elevated in the CSF of patients with severe traumatic brain injuries and parallels blood-brain barrier function. J Neurotrauma. 1999;16(7):617–628. doi: 10.1089/neu.1999.16.617.] [[PubMed][Google Scholar]
  • 44. Varedi M, Jeschke MG, Englander EW, Herndon DN, Barrow RESerum TGF-beta in thermally injured rats. Shock. 2001;16(5):380–382. doi: 10.1097/00024382-200116050-00010.] [[PubMed][Google Scholar]
  • 45. Castagnola P, Moro G, Descalzi-Cancedda F, Cancedda RType X collagen synthesis during in vitro development of chick embryo tibial chondrocytes. J Cell Biol. 1986;102(6):2310–2317. doi: 10.1083/jcb.102.6.2310.] [[Google Scholar]
  • 46. Chen QA, Gibney E, Fitch JM, Linsenmayer C, Schmid TM, Linsenmayer TFLong-range movement and fibril association of type X collagen within embryonic cartilage matrix. Proc Natl Acad Sci U S A. 1990;87(20):8046–8050. doi: 10.1073/pnas.87.20.8046.] [[Google Scholar]
  • 47. Méndez-Ferrer S, et al Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829–834. doi: 10.1038/nature09262.] [[Google Scholar]
  • 48. Ono N, Ono W, Mizoguchi T, Nagasawa T, Frenette PS, Kronenberg HMVasculature-associated cells expressing nestin in developing bones encompass early cells in the osteoblast and endothelial lineage. Dev Cell. 2014;29(3):330–339. doi: 10.1016/j.devcel.2014.03.014.] [[Google Scholar]
  • 49. Itkin T, et al Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. 2016;532(7599):323–328. doi: 10.1038/nature17624.] [[Google Scholar]
  • 50. Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJLeptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 2014;15(2):154–168. doi: 10.1016/j.stem.2014.06.008.] [[Google Scholar]
  • 51. Kusumbe AP, Ramasamy SK, Adams RHCoupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 2014;507(7492):323–328. doi: 10.1038/nature13145.] [[Google Scholar]
  • 52. Astrom M, Rausing A. Chronic Achilles tendinopathy. A survey of surgical and histopathologic findings. Clin Orthop Relat Res. 1995;(316):151–164.[PubMed]
  • 53. Myerson MS, McGarvey WDisorders of the Achilles tendon insertion and Achilles tendinitis. Instr Course Lect. 1999;48:211–218.[PubMed][Google Scholar]
  • 54. Blaney Davidson EN, van der Kraan PM, van den Berg WBTGF-beta and osteoarthritis. Osteoarthr Cartil. 2007;15(6):597–604. doi: 10.1016/j.joca.2007.02.005.] [[PubMed][Google Scholar]
  • 55. Shi M, et al Latent TGF-β structure and activation. Nature. 2011;474(7351):343–349. doi: 10.1038/nature10152.] [[Google Scholar]
  • 56. Zhang M, Wang M, Tan X, Li TF, Zhang YE, Chen DSmad3 prevents beta-catenin degradation and facilitates beta-catenin nuclear translocation in chondrocytes. J Biol Chem. 2010;285(12):8703–8710. doi: 10.1074/jbc.M109.093526.] [[Google Scholar]
  • 57. Li TF, et al Smad3-deficient chondrocytes have enhanced BMP signaling and accelerated differentiation. J Bone Miner Res. 2006;21(1):4–16.[Google Scholar]
  • 58. Vogel KG, Koob TJStructural specialization in tendons under compression. Int Rev Cytol. 1989;115:267–293.[PubMed][Google Scholar]
  • 59. Robbins JR, Evanko SP, Vogel KGMechanical loading and TGF-beta regulate proteoglycan synthesis in tendon. Arch Biochem Biophys. 1997;342(2):203–211. doi: 10.1006/abbi.1997.0102.] [[PubMed][Google Scholar]
  • 60. Maeda T, et al Conversion of mechanical force into TGF-β-mediated biochemical signals. Curr Biol. 2011;21(11):933–941. doi: 10.1016/j.cub.2011.04.007.] [[Google Scholar]
  • 61. Chen R, et al Attenuation of the progression of articular cartilage degeneration by inhibition of TGF-β1 signaling in a mouse model of osteoarthritis. Am J Pathol. 2015;185(11):2875–2885. doi: 10.1016/j.ajpath.2015.07.003.] [[Google Scholar]
  • 62. Waning DL, et al Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nat Med. 2015;21(11):1262–1271. doi: 10.1038/nm.3961.] [[Google Scholar]
  • 63. McClure JThe effect of diphosphonates on heterotopic ossification in regenerating Achilles tendon of the mouse. J Pathol. 1983;139(4):419–430. doi: 10.1002/path.1711390403.] [[PubMed][Google Scholar]
  • 64. Kim HM, Galatz LM, Das R, Havlioglu N, Rothermich SY, Thomopoulos SThe role of transforming growth factor beta isoforms in tendon-to-bone healing. Connect Tissue Res. 2011;52(2):87–98. doi: 10.3109/03008207.2010.483026.] [[PubMed][Google Scholar]
  • 65. Doschak MR, et al Bisphosphonates reduce bone mineral loss at ligament entheses after joint injury. Osteoarthr Cartil. 2005;13(9):790–797. doi: 10.1016/j.joca.2005.04.015.] [[PubMed][Google Scholar]
  • 66. Roberts AB, et al Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci U S A. 1986;83(12):4167–4171. doi: 10.1073/pnas.83.12.4167.] [[Google Scholar]
  • 67. Nall AV, et al Transforming growth factor beta 1 improves wound healing and random flap survival in normal and irradiated rats. Arch Otolaryngol Head Neck Surg. 1996;122(2):171–177. doi: 10.1001/archotol.1996.01890140057011.] [[PubMed][Google Scholar]
  • 68. Piera-Velazquez S, Li Z, Jimenez SARole of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011;179(3):1074–1080. doi: 10.1016/j.ajpath.2011.06.001.] [[Google Scholar]
  • 69. Xu J, Lamouille S, Derynck RTGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009;19(2):156–172. doi: 10.1038/cr.2009.5.] [[Google Scholar]
  • 70. Matt P, Habashi J, Carrel T, Cameron DE, Van Eyk JE, Dietz HCRecent advances in understanding Marfan syndrome: should we now treat surgical patients with losartan? J Thorac Cardiovasc Surg. 2008;135(2):389–394. doi: 10.1016/j.jtcvs.2007.08.047.] [[PubMed][Google Scholar]
  • 71. MacCarrick G, et al Loeys-Dietz syndrome: a primer for diagnosis and management. Genet Med. 2014;16(8):576–587. doi: 10.1038/gim.2014.11.] [[Google Scholar]
  • 72. Ayyavoo A, Derraik JG, Cutfield WS, Hofman PLElimination of pain and improvement of exercise capacity in Camurati-Engelmann disease with losartan. J Clin Endocrinol Metab. 2014;99(11):3978–3982. doi: 10.1210/jc.2014-2025.] [[PubMed][Google Scholar]
  • 73. Morris JC, et al Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS One. 2014;9(3):e90353. doi: 10.1371/journal.pone.0090353.] [[Google Scholar]
  • 74. Trachtman H, et al A phase 1, single-dose study of fresolimumab, an anti-TGF-β antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int. 2011;79(11):1236–1243. doi: 10.1038/ki.2011.33.] [[Google Scholar]
  • 75. Lacouture ME, et al Cutaneous keratoacanthomas/squamous cell carcinomas associated with neutralization of transforming growth factor β by the monoclonal antibody fresolimumab (GC1008) Cancer Immunol Immunother. 2015;64(4):437–446. doi: 10.1007/s00262-015-1653-0.] [[Google Scholar]
  • 76. Rice LM, et al Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J Clin Invest. 2015;125(7):2795–2807. doi: 10.1172/JCI77958.] [[Google Scholar]
  • 77. Herbertz S, et al Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther. 2015;9:4479–4499.[Google Scholar]
  • 78. Pastar I, et al Attenuation of the transforming growth factor beta-signaling pathway in chronic venous ulcers. Mol Med. 2010;16(3–4):92–101.[Google Scholar]
  • 79. Kim BC, et al Fibroblasts from chronic wounds show altered TGF-beta-signaling and decreased TGF-beta Type II receptor expression. J Cell Physiol. 2003;195(3):331–336. doi: 10.1002/jcp.10301.] [[PubMed][Google Scholar]
  • 80. Nyyssönen T, Lüthje P, Kröger HThe increasing incidence and difference in sex distribution of Achilles tendon rupture in Finland in 1987-1999. Scand J Surg. 2008;97(3):272–275. doi: 10.1177/145749690809700312.] [[PubMed][Google Scholar]
  • 81. Chytil A, Magnuson MA, Wright CV, Moses HLConditional inactivation of the TGF-beta type II receptor using Cre:Lox. Genesis. 2002;32(2):73–75. doi: 10.1002/gene.10046.] [[PubMed][Google Scholar]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.