A 12-gene set predicts survival benefits from adjuvant chemotherapy in non-small cell lung cancer patients.
Journal: 2013/September - Clinical cancer research : an official journal of the American Association for Cancer Research
ISSN: 1078-0432
Abstract:
OBJECTIVE
Prospectively identifying who will benefit from adjuvant chemotherapy (ACT) would improve clinical decisions for non-small cell lung cancer (NSCLC) patients. In this study, we aim to develop and validate a functional gene set that predicts the clinical benefits of ACT in NSCLC.
METHODS
An 18-hub-gene prognosis signature was developed through a systems biology approach, and its prognostic value was evaluated in six independent cohorts. The 18-hub-gene set was then integrated with genome-wide functional (RNAi) data and genetic aberration data to derive a 12-gene predictive signature for ACT benefits in NSCLC.
RESULTS
Using a cohort of 442 stage I to III NSCLC patients who underwent surgical resection, we identified an 18-hub-gene set that robustly predicted the prognosis of patients with adenocarcinoma in all validation datasets across four microarray platforms. The hub genes, identified through a purely data-driven approach, have significant biological implications in tumor pathogenesis, including NKX2-1, Aurora Kinase A, PRC1, CDKN3, MBIP, and RRM2. The 12-gene predictive signature was successfully validated in two independent datasets (n = 90 and 176). The predicted benefit group showed significant improvement in survival after ACT (UT Lung SPORE data: HR = 0.34, P = 0.017; JBR.10 clinical trial data: HR = 0.36, P = 0.038), whereas the predicted nonbenefit group showed no survival benefit for 2 datasets (HR = 0.80, P = 0.70; HR = 0.91, P = 0.82).
CONCLUSIONS
This is the first study to integrate genetic aberration, genome-wide RNAi data, and mRNA expression data to identify a functional gene set that predicts which resectable patients with non-small cell lung cancer will have a survival benefit with ACT.
Relations:
Citations
(58)
References
(41)
Patents
(9)
Grants
(277)
Chemicals
(1)
Diseases
(2)
Organisms
(1)
Processes
(3)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals. Drag-and-drop any entity to your messages.