ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and beta-catenin translocation.
Journal: 2005/August - Proceedings of the National Academy of Sciences of the United States of America
ISSN: 0027-8424
Abstract:
E-cadherin controls a wide array of cellular behaviors, including cell-cell adhesion, differentiation, and tissue development. We show here that E-cadherin is cleaved specifically by ADAM (a disintegrin and metalloprotease) 10 in its ectodomain. Analysis of ADAM10-deficient fibroblasts, inhibitor studies, and RNA interference-mediated down-regulation of ADAM10 demonstrated that ADAM10 is responsible not only for the constitutive shedding but also for the regulated shedding of this adhesion molecule in fibroblasts and keratinocytes. ADAM10-mediated E-cadherin shedding affects epithelial cell-cell adhesion as well as cell migration. Furthermore, the shedding of E-cadherin by ADAM10 modulates the beta-catenin subcellular localization and downstream signaling. ADAM10 overexpression in epithelial cells increased the expression of the beta-catenin downstream gene cyclin D1 dose-dependently and enhanced cell proliferation. In ADAM10-deficient mouse embryos, the C-terminal E-cadherin fragment is not generated, and the full-length protein accumulates, highlighting the in vivo relevance for ADAM10 in E-cadherin shedding. Our data strongly suggest that this protease constitutes a major regulatory element for the multiple functions of E-cadherin under physiological as well as pathological conditions.
Relations:
Content
Citations
(193)
References
(39)
Chemicals
(9)
Genes
(4)
Organisms
(3)
Processes
(11)
Anatomy
(5)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Proc Natl Acad Sci U S A 102(26): 9182-9187

ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and β-catenin translocation

Biochemical Institute and Department of Dermatology, Christian-Albrechts-University Kiel, D-24098 Kiel, Germany; and Department of Human Genetics, Katholieke Universiteit Leuven and Flanders Interuniversity Institute for Biotechnology (VIB-4), 3000 Leuven, Belgium
To whom correspondence should be addressed at: Biochemical Institute, Christian-Albrechts-University Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany. E-mail: ed.leik-inu.mehcoib@gitfasp.
T.M. and K.R. contributed equally to this work.
Edited by Richard O. Hynes, Massachusetts Institute of Technology, Cambridge, MA, and approved May 14, 2005
Edited by Richard O. Hynes, Massachusetts Institute of Technology, Cambridge, MA, and approved May 14, 2005
Received 2005 Feb 4

Abstract

E-cadherin controls a wide array of cellular behaviors, including cell-cell adhesion, differentiation, and tissue development. We show here that E-cadherin is cleaved specifically by ADAM (a disintegrin and metalloprotease) 10 in its ectodomain. Analysis of ADAM10-deficient fibroblasts, inhibitor studies, and RNA interference-mediated down-regulation of ADAM10 demonstrated that ADAM10 is responsible not only for the constitutive shedding but also for the regulated shedding of this adhesion molecule in fibroblasts and keratinocytes. ADAM10-mediated E-cadherin shedding affects epithelial cell-cell adhesion as well as cell migration. Furthermore, the shedding of E-cadherin by ADAM10 modulates the β-catenin subcellular localization and downstream signaling. ADAM10 overexpression in epithelial cells increased the expression of the β-catenin downstream gene cyclin D1 dose-dependently and enhanced cell proliferation. In ADAM10-deficient mouse embryos, the C-terminal E-cadherin fragment is not generated, and the full-length protein accumulates, highlighting the in vivo relevance for ADAM10 in E-cadherin shedding. Our data strongly suggest that this protease constitutes a major regulatory element for the multiple functions of E-cadherin under physiological as well as pathological conditions.

Keywords: ADAM, cadherin, metalloproteinases, shedding
Abstract

E-cadherin (epithelial cadherin, uvomorulin) is one of the most important molecules involved in tissue morphogenesis, wound healing, and the maintenance of tissue integrity (1, 2). The extracellular domain of this type I transmembrane glycoprotein interacts homotypically with cadherins on the surface of neighboring cells to form calcium-dependent adherens junctions. The stabilization of intercellular adhesion requires the conserved cytoplasmic domain of E-cadherin, which binds to β-catenin. β-Catenin, in turn, is linked to the cytoskeleton. Cadherin-mediated adhesion must be dynamic to accommodate epithelial growth and remodeling during development and to facilitate wound healing and turnover of epithelia in mature tissues (2, 3). Although proteolytic cleavage of E-cadherin has been suggested to cause rapid changes in cell adhesion, signaling, and apoptosis (3-5), the proteinase responsible for these processes has not been identified.

ADAMs (a disintegrin and metalloproteases), a family of zinc-dependent transmembrane proteins, have been implicated in the ectodomain shedding of various membrane-bound proteins (6, 7). ADAM17 (also known as TACE, TNF-α-converting enzyme) is required for proper epithelial tissue development in mice (8) and shares structural and functional homology with ADAM10. ADAM10 (kuzbanian) plays an essential role during neuronal development in vertebrates and Drosophila (9-11). In addition, the analysis of avian epithelial morphogenesis revealed that ADAM10 shows a very prominent expression in all epithelial tissues, especially in the epidermis, the somitic dermatome and myotome, and the epithelial tissues of the kidney, liver, and heart (12). This expression pattern suggests not only that ADAM10 might be important for neuronal development but also that it may play a significant role in the morphogenesis of epithelial tissues and in tissue remodeling. In the present study, we analyzed the potential role of different ADAMs in E-cadherin shedding and the functional relevance for keratinocyte adhesion, migration, and proliferation.

Click here to view.

Acknowledgments

We thank S. Jessen for excellent technical assistance, S. Rose-John (Biochemical Institute, Kiel, Germany) for the ADAM17-deficient MEFs, C. Blobel (Weill Medical College of Cornell University, New York) for the ADAM15-deficient MEFs, N. Fusenig for the HaCaT keratinocytes, and D. Vestweber (Max-Planck-Institut of Molecular Biomedicine, Münster, Germany) for the E-cadherin construct. This work was supported by Hensel Stiftung, Kiel, Deutsche Forschungsgemeinschaft Sonderforschungsbereich 415 (to P.S. and K.R.), Deutsche Forschungsgemeinschaft LU869/1-2 (to A.L.), Interuniversity Attraction Poles Program P5/19 of the Belgian Federal Science Policy Office, and European Union contract LSHM-CT-2003-503330 (APOPIS).

Acknowledgments

Notes

Author contributions: K.R. and P.S. designed research; T.M., K.R., A.L., J.B., F.S., D.H., and P.S. performed research; A.L., F.S., E.P., B.d.S., and D.H. contributed new reagents/analytic tools; F.S., E.P., B.d.S., and D.H. analyzed data; and K.R. and P.S. wrote the paper.

This paper was submitted directly (Track II) to the PNAS office.

Abbreviations: ADAM, a disintegrin and metalloprotease; MEF, mouse embryonic fibroblast; CTF, C-terminal fragment; PMA, phorbol-12 myristate 13-acetate; siRNA, small interfering RNA.

Notes
Author contributions: K.R. and P.S. designed research; T.M., K.R., A.L., J.B., F.S., D.H., and P.S. performed research; A.L., F.S., E.P., B.d.S., and D.H. contributed new reagents/analytic tools; F.S., E.P., B.d.S., and D.H. analyzed data; and K.R. and P.S. wrote the paper.
This paper was submitted directly (Track II) to the PNAS office.
Abbreviations: ADAM, a disintegrin and metalloprotease; MEF, mouse embryonic fibroblast; CTF, C-terminal fragment; PMA, phorbol-12 myristate 13-acetate; siRNA, small interfering RNA.

References

  • 1. Gumbiner, B. M. (1996) Cell84, 345-357. [[PubMed]
  • 2. Takeichi, M(1991) Science251, 1451-1455. [[PubMed][Google Scholar]
  • 3. Gumbiner, B. M. (2000) J. Cell Biol.148, 399-404.
  • 4. Steinhusen, U., Weiske, J., Badock, V., Tauber, R., Bommert, K. & Huber, O. (2001) J. Biol. Chem.276, 4972-4980. [[PubMed]
  • 5. Ito, K., Okamoto, I., Araki, N., Kawano, Y., Nakao, M., Fujiyama, S., Tomita, K., Mimori, T. & Saya, H. (1999) Oncogene18, 7080-7090. [[PubMed]
  • 6. Schlondorff, J. & Blobel, C. P. (1999) J. Cell Sci.112, Part 21, 3603-3617. [[PubMed]
  • 7. Seals, D. F. & Courtneidge, S. A. (2003) Genes Dev.17, 7-30. [[PubMed]
  • 8. Peschon, J. J., Slack, J. L., Reddy, P., Stocking, K. L., Sunnarborg, S. W., Lee, D. C., Russell, W. E., Castner, B. J., Johnson, R. S., Fitzner, J. N., et al. (1998) Science282, 1281-1284. [[PubMed]
  • 9. Rooke, J., Pan, D., Xu, T. & Rubin, G. M. (1996) Science273, 1227-1231. [[PubMed]
  • 10. Pan, D. & Rubin, G. M. (1997) Cell90, 271-280. [[PubMed]
  • 11. Hartmann, D., De Strooper, B., Serneels, L., Craessaerts, K., Herreman, A., Annaert, W., Umans, L., Lubke, T., Lena, IA., von Figura, K., et al. (2002) Hum. Mol. Genet.11, 2615-2624. [[PubMed][Google Scholar]
  • 12. Hall, R. J. & Erickson, C. A. (2003) Dev. Biol.256, 146-159. [[PubMed]
  • 13. Hundhausen, C., Misztela, D., Berkhout, TA., Broadway, N., Saftig, P., Reiss, K., Hartmann, D., Fahrenholz, F., Postina, R., Matthews, V., et al. (2003) Blood102, 1186-1195. [[PubMed][Google Scholar]
  • 14. Herreman, A., Hartmann, D., Annaert, W., Saftig, P., Craessaerts, K., Serneels, L., Umans, L., Schrijvers, V., Checler, F., Vanderstichele, H., et al. (1999) Proc. Natl. Acad. Sci. USA96, 11872-11877.
  • 15. Horiuchi, K., Weskamp, G., Lum, L., Hammes, H. P., Cai, H., Brodie, T. A., Ludwig, T., Chiusaroli, R., Baron, R., Preissner, K. T., et al. (2003) Mol. Cell. Biol.23, 5614-5624.
  • 16. Black, R. A., Rauch, C. T., Kozlosky, C. J., Peschon, J. J., Slack, J. L., Wolfson, M. F., Castner, B. J., Stocking, K. L., Reddy, P., Srinivasan, S., et al. (1997) Nature385, 729-733. [[PubMed]
  • 17. Boukamp, P., Petrussevska, R. T., Breitkreutz, D., Hornung, J., Markham, A. & Fusenig, N. E. (1988) J. Cell Biol.106, 761-771.
  • 18. Caldelari, R., Suter, M. M., Baumann, D., De Bruin, A. & Muller, E. (2000) J. Invest. Dermatol.114, 1064-1065. [[PubMed]
  • 19. Reiss, K., Maretzky, T., Ludwig, A., Tousseyn, T., De Strooper, B., Hartmann, D. & Saftig, P. (2005) EMBO J.24, 742-752.
  • 20. Radice, G. L., Rayburn, H., Matsunami, H., Knudsen, K. A., Takeichi, M. & Hynes, R. O. (1997) Dev. Biol.181, 64-78. [[PubMed]
  • 21. Marambaud, P., Shioi, J., Serban, G., Georgakopoulos, A., Sarner, S., Nagy, V., Baki, L., Wen, P., Efthimiopoulos, S., Shao, Z., et al. (2002) EMBO J.21, 1948-1956.
  • 22. Brummelkamp, T. R., Bernards, R. & Agami, R. (2002) Science296, 550-553. [[PubMed]
  • 23. Pece, S. & Gutkind, J. S. (2000) J. Biol. Chem.275, 41227-41233. [[PubMed]
  • 24. Cha, D., O'Brien, P., O'Toole, E. A., Woodley, D. T. & Hudson, L. G. (1996) J. Invest. Dermatol.106, 590-597. [[PubMed]
  • 25. Wheelock, M. J., Buck, C. A., Bechtol, K. B. & Damsky, C. H. (1987) J. Cell. Biochem.34, 187-202. [[PubMed]
  • 26. Ryniers, F., Stove, C., Goethals, M., Brackenier, L., Noe, V., Bracke, M., Vandekerckhove, J., Mareel, M. & Bruyneel, E. (2002) Biol. Chem.383, 159-165. [[PubMed]
  • 27. Levine, E., Lee, C. H., Kintner, C. & Gumbiner, B. M. (1994) Development (Cambridge, U.K.)120, 901-909. [[PubMed]
  • 28. Hermiston, M. L. & Gordon, J. I. (1995) J. Cell Biol.129, 489-506.
  • 29. Uemura, T., Oda, H., Kraut, R., Hayashi, S., Kotaoka, Y. & Takeichi, M. (1996) Genes Dev.10, 659-671. [[PubMed]
  • 30. Gumbiner, B. M. (1992) Cell69, 385-387. [[PubMed]
  • 31. Tran, P. O., Hinman, L. E., Unger, G. M. & Sammak, P. J. (1999) Exp. Cell Res.246, 319-326. [[PubMed]
  • 32. Coomber, B. L. & Gotlieb, A. I. (1990) Arteriosclerosis10, 215-222. [[PubMed]
  • 33. Noe, V., Willems, J., Vandekerckhove, J., Roy, F. V., Bruyneel, E. & Mareel, M. (1999) J. Cell Sci.112, Part 1, 127-135. [[PubMed]
  • 34. Nagano, O., Murakami, D., Hartmann, D., De Strooper, B., Saftig, P., Iwatsubo, T., Nakajima, M., Shinohara, M. & Saya, H. (2004) J. Cell Biol.165, 893-902.
  • 35. Murai, T., Miyazaki, Y., Nishinakamura, H., Sugahara, K. N., Miyauchi, T., Sako, Y., Yanagida, T. & Miyasaka, M. (2004) J. Biol. Chem.279, 4541-4550. [[PubMed]
  • 36. He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., Morin, P. J., Vogelstein, B. & Kinzler, K. W. (1998) Science281, 1509-1512. [[PubMed]
  • 37. Shtutman, M., Zhurinsky, J., Simcha, I., Albanese, C., D'Amico, M., Pestell, R. & Ben Ze'ev, A. (1999) Proc. Natl. Acad. Sci. USA96, 5522-5527.
  • 38. Stockinger, A., Eger, A., Wolf, J., Beug, H. & Foisner, R. (2001) J. Cell Biol.154, 1185-1196.
  • 39. Boterberg, T., Bracke, M., Bruyneel, E. & Mareel, M. (2001) in Methods in Molecular Medicine, eds. Brooks, S. & Schumacher, U. (Humana, Totowa, NJ), pp. 33-45.
  • 40. Gottardi, C. J., Wong, E. & Gumbiner, B. M. (2001) J. Cell Biol.153, 1049-1060.
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.